Efficient computing of n-dimensional simultaneous Diophantine approximation problems

Attila KOVÁCS
Eötvös Loránd University
Faculty of Informatics
email: attila.kovacs@compalg.inf.elte.hu

Norbert TIHANYI
Eötvös Loránd University
Faculty of Informatics
email: ntihanyi@compalg.inf.elte.hu

Abstract. In this paper we consider two algorithmic problems of simultaneous Diophantine approximations. The first algorithm produces a full solution set for approximating an irrational number with rationals with common denominators from a given interval. The second one aims at finding as many simultaneous solutions as possible in a given time unit. All the presented algorithms are implemented, tested and the PariGP version made publicly available.

1 Introduction

1.1 The problem statement

Rational approximation, or alternatively, Diophantine approximation is very important in many fields of mathematics and computer science. Archimedes approximated the irrational number π with $22/7$. Long before Archimedes, ancient astronomers in Egypt, Babylonia, India and China used rational approximations. While the work of John Wallis (1616–1703) and Christiaan Huygens (1629–1695) established the field of continued fractions, it began to blossom

Computing Classification System 1998: G.2.0
Mathematics Subject Classification 2010: 68R01, 11J68
Key words and phrases: Diophantine approximation
Simultaneous Diophantine approximations

when Leonhard Euler (1707–1783), Johann Heinrich Lambert (1728–1777) and Joseph Louis Lagrange (1736–1813) embraced the topic. In the 1840s, Joseph Liouville (1809–1882) obtained an important result on general algebraic numbers: if α is an irrational algebraic number of degree $n > 0$ over the rational numbers, then there exists a constant $c(\alpha) > 0$ such that

$$|\alpha - \frac{p}{q}| > \frac{c(\alpha)}{q^n}$$

holds for all integers p and $q > 0$. This result allowed him to produce the first proven examples of transcendental numbers. In 1891 Adolf Hurwitz (1859–1919) proved that for each irrational α infinitely many pairs (p, q) of integers satisfy

$$|\alpha - \frac{p}{q}| < \frac{1}{q^{2+\sqrt{5}},}$$

but there are some irrational numbers β for which at most finitely many pairs satisfy

$$|\beta - \frac{p}{q}| < \frac{1}{q^{2+\gamma + \sqrt{5} + \mu}}$$

no matter how small the positive increments γ and μ are.

The idea can be generalized to simultaneous approximation. Simultaneous diophantine approximation originally means that for given real numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ find $p_1, p_2, \ldots, p_n, q \in \mathbb{Z}$ such that

$$|\alpha_i - \frac{p_i}{q}|$$

is “small” for all i, and q is “not too large”.

For a given real α let us denote the nearest integer distance function by $\| \cdot \|$, that is, $\|\alpha\| = \min(|\alpha - j|, j \in \mathbb{Z})$. Then, simultaneous approximation can be interpreted as minimizing

$$\max \{\|q\alpha_1\|, \ldots, \|q\alpha_n\|\}.$$

In 1842 Peter Gustav L. Dirichlet (1805–1859) showed that there exist simultaneous Diophantine approximations with absolute error bound $q^{-(1+1/n)}$. To be more precise, he showed that there are infinitely many approximations satisfying

$$|q \cdot \alpha_i - p_i| < \frac{1}{q^{1/n}}$$

(1)
for all $1 \leq i \leq n$. Unfortunately, no polynomial algorithm is known for the simultaneous Diophantine approximation problem. However, due to the L3 algorithm of Lenstra, Lenstra and Lovász, if $\alpha_1, \alpha_2, \ldots, \alpha_n$ are irrationals and $0 < \varepsilon < 1$ then there is a polynomial time algorithm to compute integers $p_1, p_2, \ldots, p_n, q \in \mathbb{Z}$ such that

$$1 \leq q \leq 2^{n(n+1)/4} \varepsilon^{-n} \text{ and } |q \cdot \alpha_i - p_i| < \varepsilon$$

for all $1 \leq i \leq n$ (see [10]).

In this paper we focus on two algorithmic problems. Consider the set of irrationals $\Psi = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$. Let $\varepsilon > 0$ be real and $1 \leq a \leq b$ be natural numbers. Furthermore, let us define the set

$$\Omega(\Psi, \varepsilon, a, b) = \{k \in \mathbb{N} : a \leq k \leq b, ||k\alpha_i|| < \varepsilon \text{ for all } \alpha_i \in \Psi\}.$$ \hspace{1cm} (2)

For given Ψ, ε and a, b

1. determine all the elements of $\Omega(\Psi, \varepsilon, a, b)$,

2. determine as many elements of $\Omega(\Psi, \varepsilon, a, b)$ as possible in a given time unit

efficiently. We refer to the first problem as the “all-elements simultaneous Diophantine approximation problem”. In case of $|\Psi| = n \geq 1$ we call it an n-dimensional simultaneous approximation. The second problem is referred to as the “approximating as many elements as possible” problem.

Challenges:

1. Determine all elements of

$$\Omega((\sqrt{2}, 10^{-17}, 10^{20}, 10^{21})).$$ \hspace{1cm} (3)
2. Determine as many elements of

\[
\Omega \left(\left\{ \frac{\log(p)}{\log(2)}, p \text{ prime}, 3 \leq p \leq 19 \right\}, 10^{-2}, 1, 10^{18} \right)
\]

(4)

as possible in a given time unit.

1.2 The continued fraction approach

It is well-known that continued fractions are one of the most effective tools of rational approximation to a real number. Simple continued fractions are expressions of the form

\[a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cdots}} \]

where \(a_i\) are integer numbers with \(a_1, a_2, \ldots > 0\). It is called finite if it terminates, and infinite otherwise. These continued fractions are usually represented in bracket form \([a_0, a_1, \ldots, a_m, \ldots]\), i.e.

\[
C_0 = [a_0] = a_0, \quad C_1 = [a_0, a_1] = a_0 + \cfrac{1}{a_1}, \quad C_2 = [a_0, a_1, a_2] = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2}}, \ldots
\]

where \(C_m\) are called convergents. Clearly, the convergents \(C_m\) represent some rational numbers \(p_m/q_m\). An infinite continued fraction \([a_0, a_1, a_2, \ldots]\) is called convergent if its sequence of convergents \(C_m\) converges in the usual sense, i.e. the limit

\[\alpha = \lim_{m \to \infty} C_m = \lim_{m \to \infty} [a_0, a_1, \ldots, a_m] \]

exists. In this case we say that the continued fraction represents the real number \(\alpha\). The simple continued fraction expansion of \(\alpha \in \mathbb{R}\) is infinite if and only if \(\alpha\) is irrational. The convergents \(C_m\) are the best rational approximations in the following sense:

Lemma 1 No better rational approximation exists to the irrational number \(\alpha\) with smaller denominator than the convergents \(C_m = p_m/q_m\).

Example 2 The simple continued fraction approximation for \(\sqrt{2}\) is \([1, 2, 2, \ldots]\), the sequence of the convergents is

\[
1, \frac{3}{2}, 1\frac{7}{5}, 2\frac{17}{12}, 2\frac{41}{29}, 1\frac{99}{70}, 2\frac{239}{169}, 1\frac{577}{408}, 2\frac{1393}{985}, 2\frac{3363}{2378}, 1\frac{8119}{5741}, \ldots
\]
Among all fractions with denominator at most 29, the fraction 41/29 is the closest to $\sqrt{2}$, among all fractions with denominator at most 70, the fraction 99/70 is closest to $\sqrt{2}$, and so on.

Every convergent is a best rational approximation, but these are not all of the best rational approximations. Fractions of the form

$$\frac{p_{m-1} + jp_m}{q_{m-1} + jq_m} \quad (1 \leq j \leq a_{m+2} - 1),$$

are called intermediate convergents or semi-convergents. To get every rational approximation between two consecutive p_m/q_m and p_{m+1}/q_{m+1}, we have to calculate the intermediate convergents.

Example 2 (cont.) The missing intermediate convergents of Example 2 are

$$4, 10, 24, 58, 140, 338, 816, 1970, 4756, 3, 7, 17, 47, 99, 239, 577, 1393, 3363, \ldots$$

The approximations $|\alpha - p/q|$ above are also known as “best rational approximations of the first kind”. However, sometimes we are interested in the approximations $|\alpha \cdot q - p|$. This is called the approximation of a second kind.

Lemma 3 [3] A rational number p/q, which is not an integer, is a convergent of a real number α if and only if it is a best approximation of the second kind of α.

In 1997 Clark Kimberling proved the following result regarding intermediate convergents [5]:

Lemma 4 The best lower (upper) approximates to a positive irrational number α are the even-indexed (odd-indexed) intermediate convergents.

Example 2 (cont.) In order to generate many integers q that satisfy

$$\| q \cdot \sqrt{2} \| < 10^{-5} \tag{5}$$

one can apply the theory of continued fractions, especially convergents. If q_m is the first integer that satisfies $\| q_m \cdot \sqrt{2} \| < 10^{-5}$ in the continued fraction expansion of $\sqrt{2}$, then all convergents with denominator larger than q_m will satisfy equation (5).
Example 5 Consider Challenge 1 stated in (3). There are only 3 convergents of $\sqrt{2}$ where $10^{20} < q_m < 10^{21}$. They are

$$
\begin{align*}
23380673249933208099 & \quad 564459384575477049359 & \quad 1362725501650887306817 \\
165326326037771920630 & \quad 399133058537705128729 & \quad 963592443113182178088
\end{align*}
$$

With intermediate convergents we get 2 more solutions. Hence, with the theory of continued fractions we are able to find only 5 appropriate integers. One may ask how many elements are in the set Ω in (3)?

Hermann Weyl (1855–1955) and Waclaw Sierpiński (1882–1969) proved in 1910 that if $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ then $\alpha, 2\alpha, 3\alpha, \ldots \pmod{1}$ is uniformly distributed on the unit interval. From this theorem it immediately follows that there are approximately $2(b-a)\varepsilon$ appropriate integers in the $[a,b]$ interval. In Challenge 1 we expect $2(10^{21} - 10^{20}) \cdot 10^{-17} = 18000 \ (\pm 1)$ integers. This is by several orders of magnitude more than what we were able to obtain by continued fractions.

1.3 The Lenstra–Lenstra–Lovász approach

We have seen in the previous section that Challenge 1 is unsolvable with the theory of continued fractions. Challenge 2 is a 7-dimensional simultaneous approximation problem and is even more beyond the potentials of continued fractions. Although there is not known polynomial-time algorithm that is able to solve the Dirichlet type simultaneous Diophantine approximation problem, there exists an algorithm that can be useful for similar problems. The Lenstra–Lenstra–Lovász basis reduction algorithm (L3) is a polynomial-time algorithm that finds a reduced basis in a lattice [10]. The algorithm can be applied to solve simultaneous Diophantine approximation with an extra condition.

Lemma 6 There exists a polynomial-time algorithm for the given irrationals $\alpha_1, \alpha_2, \ldots, \alpha_n$ and $0 < \varepsilon < 1$ that can compute the integers p_1, \ldots, p_n and q such that

$$
|\alpha_i - \frac{p_i}{q}| < \frac{\epsilon}{q}
$$

and

$$
0 < q \leq \beta^{n(n+1)/4} \varepsilon^{-n}
$$

hold for all $1 \leq i \leq n$, where β is an appropriate reduction parameter.

The extra condition is the bound $0 < q \leq \beta^{n(n+1)/4} \varepsilon^{-n}$.
In one-dimension the L^3 algorithm provides exactly the continued fraction approach discussed in the previous section, hence L^3 is not an effective tool for answering Challenge 1. And what about the multidimensional case like Challenge 2?

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be irrational numbers and let us approximate them with rationals admitting an $\varepsilon > 0$ error. Let $X = \beta^{n(n+1)/4} \varepsilon^{-n}$ and let the matrix A be the following:

\[
A = \begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
\alpha_1 X & X & 0 & \ldots & 0 \\
\alpha_2 X & 0 & X & \ldots & 0 \\
& \vdots & & \ddots & \vdots \\
\alpha_n X & 0 & 0 & \ldots & X
\end{bmatrix}.
\]

Applying the L^3 algorithm for A, the first column of the resulting matrix contains the vector $[q, p_1, p_2, p_3, \ldots, p_n]^T$ which satisfies (6).

Let us see how the L^3 algorithm works in dimension 7. Let $\alpha_i = \frac{\log(p_{i+1})}{\log(2)}$ where p_i denotes the i-th prime for $1 \leq i \leq 7$, and let $\varepsilon = 0.01$. We are looking for an integer $q \leq 2^{14} \cdot 100^7$ that satisfies $\|q \cdot \alpha_i\| < \varepsilon$ for all i. Applying the L^3 algorithm we got $q = 132588600944418$. It is easy to verify that $\|q \cdot \alpha_i\| < 0.01$ holds for all $1 \leq i \leq 7$.

The L^3 algorithm can also be applied in higher dimensions, however, there are some cases where the algorithm cannot be used efficiently. The real drawback of the method for our purposes is that it is inappropriate for finding all or many different solutions q in an arbitrary interval. We note that sometimes one can find a few more solutions with a different choice of β (but not much more).

It can be concluded that the apparatus of the continued fractions and the L^3 algorithm is not appropriate for solving Challenge 1 and Challenge 2 problems. In this paper we present new methods that can be used to solve these kinds of problems efficiently. All the algorithms presented in this paper were implemented and tested in PARI/GP 2.5.3 with an extension of GNU MP 5.0.1. The experimenting environment was an Intel® Core i5-2450M with Sandy Bridge architecture. The code can be downloaded from the project homepage\(^1\).

\(^1\)http://www.riemann-siegel.com/
2 Approximation in the one-dimensional case

2.1 “All-elements” approximation

In this section we present how to calculate all the elements of \(\Omega(\gamma, \varepsilon, a, b) \) where \(\gamma = \{\alpha\} \).

For a given \(\Omega \) let \(k : \{1, 2, \ldots, |\Omega|\} \to \Omega \) monotonically increasing, so \(k_i \) denotes the \(i \)-th integer in \(\Omega \). Let us define the set

\[
\Delta_\Omega = \{k_{n+1} - k_n : 1 \leq n \leq |\Omega| - 1\}.
\]

The set \(\Delta_\Omega \) contains all possible step-sizes between two consecutive \(k_i \)'s.

Theorem 7 \(|\Delta_\Omega| \leq 3 \).

Proof. The proof has two parts. In the first step we construct all the possible three elements of \(\Delta_\Omega \) and in the second step we show that there is no more. For the given irrational \(\alpha \) and an arbitrary \(m \in \mathbb{N} \) let

\[
\langle m \rangle = \begin{cases}
\|\alpha m\| & \text{if } \alpha m - \|\alpha m\| \in \mathbb{N}, \\
-\|\alpha m\| & \text{if } \alpha m + \|\alpha m\| \in \mathbb{N}.
\end{cases}
\]

Let us furthermore define the following open intervals:

\[
A = (-2\varepsilon, -\varepsilon), \ B = (-\varepsilon, 0), \ C = (0, \varepsilon), \ D = (\varepsilon, 2\varepsilon).
\]

(7)

Let \(m_1 \) be the smallest positive integer that satisfies \(\langle m_1 \rangle \in C \cup D \), let \(m_2 \) be the the smallest positive integer that satisfies \(\langle m_2 \rangle \in A \cup B \) and let \(m_3 = m_1 + m_2 \).

The first part of the proof is to show that there is always at least one integer \((m_1, m_2 \) or \(m_3) \) that adding to an arbitrary \(k_i \in \Omega \) always produces a new integer \(k_j \in \Omega \). Clearly, \(\langle k_i \rangle \in B \cup C \) for all \(k_i \). Let us see the following cases:

\[
\langle k_i \rangle \in B : \\
\text{ If } \langle m_1 \rangle \in C, \langle m_2 \rangle \in A \cup B \text{ then } \langle k_i + m_1 \rangle \in B \cup C. \\
\text{ If } \langle m_1 \rangle \in D, \langle m_2 \rangle \in A \text{ then } \langle k_i + (m_1 + m_2) \rangle \in B \cup C. \\
\text{ If } \langle m_1 \rangle \in D, \langle m_2 \rangle \in A \text{ and } \langle m_1 + m_2 \rangle \in B \text{ then } \langle k_i + (m_1 + m_2) \rangle \in A \cup B. \\
\text{ If } \langle k_i + (m_1 + m_2) \rangle \in A \text{ then } \langle k_i + (m_1 + m_2) - m_2 \rangle \in B \cup C. \\
\text{ If } \langle m_1 \rangle \in D, \langle m_2 \rangle \in B \text{ and } \langle m_1 + m_2 \rangle \in C \text{ then } \langle k_i + (m_1 + m_2) \rangle \in B \cup C. \\
\text{ If } \langle m_1 \rangle \in D, \langle m_2 \rangle \in B \text{ and } \langle m_1 + m_2 \rangle \in D \text{ then } \langle k_i + (m_1 + m_2) \rangle \in C \cup D. \\
\text{ If } \langle k_i + (m_1 + m_2) \rangle \in D \text{ then } \langle k_i + (m_1 + m_2) - m_1 \rangle \in B \cup C.
\]
\[\langle k_i \rangle \in C : \]
If \(\langle m_1 \rangle \in C \cup D, \langle m_2 \rangle \in B \) then \(\langle k_i + m_2 \rangle \in B \cup C. \)
If \(\langle m_1 \rangle \in C, \langle m_2 \rangle \in A \) and \(\langle m_1 + m_2 \rangle \in B \) then \(\langle k_i + (m_1 + m_2) \rangle \in B \cup C. \)
If \(\langle m_1 \rangle \in C, \langle m_2 \rangle \in A \) and \(\langle m_1 + m_2 \rangle \in A \) then \(\langle k_i + (m_1 + m_2) \rangle \in A \cup B. \)
If \(\langle k_i + (m_1 + m_2) \rangle \in A \) then \(\langle k_i + (m_1 + m_2) - m_2 \rangle \in B \cup C. \)
If \(\langle m_1 \rangle \in D, \langle m_2 \rangle \in A \) and \(\langle m_1 + m_2 \rangle \in B \) then \(\langle k_i + (m_1 + m_2) \rangle \in B \cup C. \)
If \(\langle m_1 \rangle \in D, \langle m_2 \rangle \in A \) and \(\langle m_1 + m_2 \rangle \in C \) then \(\langle k_i + (m_1 + m_2) \rangle \in C \cup D. \)
If \(\langle k_i + (m_1 + m_2) \rangle \in D \) then \(\langle k_i + (m_1 + m_2) - m_1 \rangle \in B \cup C. \)

Let now \(X = \Delta_\Omega \setminus \{m_1, m_2, m_3\} \). We claim that \(X = \emptyset \). Suppose otherwise, and let \(j \) be the smallest index with \(m = k_{j+1} - k_j \in X \). Clearly, \(\langle m \rangle \in A \cup B \cup C \cup D \). We can observe as well that for all \(m \in \mathbb{N}, k_i \in \Omega, \langle k_i + m \rangle \in B \cup C \) implies \(\langle m \rangle \in A \cup B \cup C \cup D \). Then it is easy to see that

- \(j > 1, \) and \(k_i \)'s are integer linear combinations of \(m_1 \) and \(m_2 \) for all \(i \leq j, \)
- \(m_1, m_2 \leq m < m_1 + m_2, \)
- \(\langle m \rangle \in A \cup D. \)

If \(\langle m \rangle \in A \) then \(\langle m - m_2 \rangle \in B \cup C \), which contradicts the minimality of \(j \). In the same way, if \(\langle m \rangle \in D \) then \(\langle m - m_1 \rangle \in B \cup C \), which is a contradiction again. Hence, such an \(m \) does not exist. The proof is complete. \(\square \)

Finding the integers \(m_1 \) and \(m_2 \) can be done very effectively with the theory of intermediate convergents. It was already discussed that intermediate convergents of an irrational \(\alpha \) always produce the best upper and lower approximations to \(\alpha \), so \(m_1 \) and \(m_2 \) must be intermediate convergents.

Example 5 (cont.) Applying the FindMMM algorithm (Algorithm 1) we have the values
\[
m_1 = 59341817924539925, \\
m_2 = 24580185800219268, \\
m_3 = 83922003724759193.
\]
After the precalculation of \(m_1 \) and \(m_2 \) it is very easy to compute every \(k_i \) between \(10^{20} \) and \(10^{21} \). First we have to find an intermediate convergent between \(10^{20} \) and \(10^{21} \). It can be done in polynomial time with the theory of continued fractions (e.g: \(233806732499933208099 \)). After that we can add, subtract \(m_1 \), \(m_2 \) or \(m_3 \) until we reach the bounds of the interval. The Weyl equidistribution theorem predicts 18000 integers that solve (3). Applying Challenge 1 Solver
algorithm (Algorithm 2) we found exactly 18,000 integers. The precalculation and the computation of all k_i values took only 31 ms.

Algorithm 1 FindMMM

Description:
The algorithm is based on Theorem 7. The algorithm finds the smallest m_1, m_2 and m_3 integers such that $0 < \langle m_1 \rangle < 2\epsilon$, $-2\epsilon < \langle m_2 \rangle < 0$. The output of the algorithm is $\Delta_\Omega = \{m_1, m_2, m_1 + m_2\}$. The main while loop in this algorithm (from line 5 to 15) goes through all intermediate convergents to find m_1 and m_2. The theory of intermediate convergents ensures that $m_1, m_2 \in q_i$ where q_i is the i^{th} intermediate convergent. When m_1 and m_2 are found the while loop terminates and the algorithm returns m_1, m_2 and $m_1 + m_2$ in ascending order.

Precondition: $\alpha \in \mathbb{R} \setminus \mathbb{Q}, \alpha > \epsilon > 0.$

```plaintext
1: procedure FindMMM($\alpha$, $\epsilon$)
2:  i ← 0
3:  $m_1$ ← 0
4:  $m_2$ ← 0
5:  while $m_1 = 0$ or $m_2 = 0$ do
6:      i ← i + 1
7:      $q_i$ ← $i^{th}$ intermediate convergents of $\alpha$
8:      k ← \text{Frac}(q_i \cdot \alpha) \quad \triangleright \text{Fractional part of } q_i \cdot \alpha
9:      if $m_1 = 0$ and $k < 2\epsilon$ then
10:         $m_1$ ← $q_i$
11:      end if
12:      if $m_2 = 0$ and $k > 1 - 2\epsilon$ then
13:         $m_2$ ← $q_i$
14:      end if
15:  end while
16:  RETURN($\min(m_1, m_2), \max(m_1, m_2), m_1 + m_2$)
17: end procedure
```
Algorithm 2 Challenge 1 Solver

Description:
The algorithm solves Challenge 1 (see 3). Line 5 calls the FindMMM algorithm to determine $\Delta \Omega$. With the theory of continued fractions line 6 finds an integer $k \in \Omega$. In the first while loop (lines 9–18) the appropriate m_i is subtracted from k to generate a new integer $k_i \in \Omega$. The process is repeated until the lower bound A of the interval is reached. In the second while loop (lines 20–29) the appropriate m_i is added to k generating $k_i \in \Omega$. The process is repeated until the upper bound of the interval B is reached. This method produces all the 18,000 integers that satisfy Challenge 1.

1: $x \leftarrow \sqrt{2}$
2: $\epsilon \leftarrow 10^{-17}$
3: $A \leftarrow 10^{20}$
4: $B \leftarrow 10^{21}$
5: $v \leftarrow \text{FindMMM}(x, \epsilon)$
6: $k \leftarrow \text{Find } q_x \text{ in the interval } [A, B] \text{ where } \text{Frac}(q_x \cdot x) < \epsilon$
7: $k_{\text{temp}} \leftarrow k$
8: $\text{PRINT}(k)$
9: while $k > A$ do
10: for $i = 1 \rightarrow 3$ do
11: $\text{ok} \leftarrow \text{Frac}((k - v[i]) \cdot x)$
12: if $(\text{ok} < \epsilon)$ or $(\text{ok} > 1 - \epsilon)$ then $k \leftarrow k - v[i]$
13: if $k > A$ then $\text{PRINT}(k)$
14: end if
15: break
16: end for
17: end while
18: $k \leftarrow k_{\text{temp}}$
19: while $k < B$ do
20: for $i = 1 \rightarrow 3$ do
21: $\text{ok} \leftarrow \text{Frac}((k + v[i]) \cdot x)$
22: if $(\text{ok} < \epsilon)$ or $(\text{ok} > 1 - \epsilon)$ then $k \leftarrow k + v[i]$
23: if $k < B$ then $\text{PRINT}(k)$
24: end if
25: break
26: end while
2.2 “Many elements” approximation

In some cases it is not necessary to find all the \(k_i \) elements of \(\Omega \), rather it is enough to find as much as possible within a given time unit. Then, the following procedure works:

Find the smallest integer \(x \) that satisfies \(0 < \langle x \rangle < \varepsilon \) and find the smallest integer \(y \) that satisfies \(-\varepsilon < \langle y \rangle < 0 \). Using the notations (7) it is easy to see that if \(\langle k_i \rangle \in B \) and \(\langle x \rangle \in C \) then \(\langle k_i + x \rangle \in B \cup C \). In the same way, if \(\langle k_i \rangle \in C \) and \(\langle y \rangle \in B \) then \(\langle k_i + y \rangle \in B \cup C \). Only with these two integers it is always possible to produce a subset of \(\Omega \).

Example 5 (cont.) If we want to determine just “many” elements of \(\Omega \), the previous method generates 12945 integers within 15 ms.

3 Approximations for the multi-dimensional case

3.1 “Many elements” approximation

Calculating all-elements of \(\Omega \) seems to be hard in higher dimensions. However, we can generalize our one dimensional method to find “many” \(q \in \Omega \) integers recursively. The algorithm is based on the following lemma:

Lemma 8 Let the irrationals \(\alpha_1, \alpha_2, \ldots, \alpha_n \) and the real \(\varepsilon > 0 \) be given. Then there is a set \(\Gamma_n \) with \(2^n \) elements with the following property: if \(q \in \Omega \) then \(q + \gamma \in \Omega \) for some \(\gamma \in \Gamma_n \).

Proof. Let \(q \in \Omega \) be given. Let us define an \(n \)-dimensional binary vector \(b \) associated with \(q \) in the following way:

\[
b_i = \begin{cases}
1 & \text{if } q\alpha_i - \|q\alpha_i\| \in \mathbb{N}, \\
0 & \text{if } q\alpha_i + \|q\alpha_i\| \in \mathbb{N}.
\end{cases} \tag{8}
\]

Let \(\Gamma_n \) be the set for which

1. \(\gamma \in \Gamma_n \) implies \(\|q\alpha_i\| < \varepsilon \) for all \(1 \leq i \leq n \),
2. all the associated binary representations by (8) are different.

Then, for a given \(q \in \Omega \) there exists a \(\gamma \in \Gamma_n \) such that \(q + \gamma \in \Omega \), e.g. when their associated binary representations are (1’s binary) complements. Clearly, \(|\Gamma_n| = 2^n \). The proof is finished. \(\square \)
Remark 9 Computing the appropriate $\gamma \in \Gamma_n$ for a given $q \in \Omega$ is not necessarily unique.

Corollary 10 Remember the first dimension case: For all $m \in \mathbb{N}$, $q \in \Omega$, $(q + m) \in B \cup C$ implies that $(m) \in A \cup B \cup C \cup D$. We can generalize this to higher dimensions. Let $q \in \Omega$ and $m \in \mathbb{N}$ be given. Then $q + m \in \Omega$ implies $\|m \cdot \alpha_i\| \in A \cup B \cup C \cup D$ for all $1 \leq i \leq n$.

Unfortunately, the precalculation of the 2^n integers is in general computationally expensive. However, there are several tricks based upon Lemma 8 that can be applied to make the generation more efficient.

Example 5 (cont.) In Challenge 2 the precalculation of the $2^7 = 128$ integers took approximately 6.14 sec on our architecture. Table 1 shows the result. Applying the Challenge 2 Solver we were able to produce 120852 integers in Ω within 26.8 sec.

Table 1: The result of the precalculation for solving Challenge 2
Algorithm 3 Challange 2 Solver

Description:
The algorithm answers Challenge 2 (see (4)). Line 5 calls the PRECALC algorithm in order to determine the 2^n integers. The while loop generates a new integer in Ω using the precalculated ones. The method produces 120,852 integers that satisfy Challenge 2.

1: $n \leftarrow 7$
2: $X \leftarrow \frac{\log(p)}{\log(2)}$, p prime, $3 \leq p \leq 19$
3: $\varepsilon \leftarrow 0.01$
4: $B \leftarrow 10^{18}$
5: $v \leftarrow \text{PRECALC}(n, \varepsilon, X, 2^{12})$
6: $k \leftarrow 0$
7: while $k < B$ do
8: for $i = 1 \rightarrow \text{length}(v)$ do
9: $t \leftarrow \text{TRUE}$
10: for $j = 1 \rightarrow n$ do
11: $\text{ok} \leftarrow \text{Frac}((k + v[i]) \cdot X[j])$
12: if $(\text{ok} > \varepsilon)$ and $(\text{ok} < 1 - \varepsilon)$ then
13: $t \leftarrow \text{FALSE}$
14: break
15: end if
16: end for
17: if $t = \text{TRUE}$ then
18: $k \leftarrow k + v[i]$
19: if $k < B$ then
20: \text{PRINT}(k)
21: end if
22: break
23: end if
24: end for
25: end while
Algorithm 4 Reduce

Description: The algorithm reduces the generation time of Γ_n in the Precalc algorithm with adding new elements to K. In this algorithm K is a list of integers and X is a set of irrationals such that $\|K[i] \cdot X[j]\| < \varepsilon$ for all i and for all $j < n$. The main part of the algorithm is the for loop (lines 4 – 9). Each element of K is subtracted (added) from (to) every element of K and the new integer k_i that satisfies $\|k_i \cdot X[j]\| < \varepsilon$ for all $j < n$ are appended to K.

Precondition: K: set of integers, $n \in \mathbb{N}$, $\varepsilon > 0$, X: set of irrationals

1: **procedure** Reduce(K, n, ε, X)
2: \hspace{0.5cm} Sort(K) \hspace{0.5cm} // Sorting, every element occurs only once
3: \hspace{0.5cm} $M \leftarrow$ dynamic array()
4: \hspace{0.5cm} for $i = 1 \rightarrow \text{length}(K)$ do
5: \hspace{1cm} for $j = 1 \rightarrow \text{length}(K)$ do
6: \hspace{1.5cm} Append(M, abs($K[i] - K[j]$)) \hspace{0.5cm} // append abs($K[i] - K[j]$) to M
7: \hspace{1.5cm} Append(M, abs($K[i] + K[j]$))
8: \hspace{1cm} end for
9: end for
10: Sort(M)
11: for $i = 1 \rightarrow \text{length}(M)$ do
12: \hspace{0.5cm} $t \leftarrow$ TRUE
13: \hspace{0.5cm} for $j = 1 \rightarrow n$ do
14: \hspace{1cm} $t \leftarrow t \text{ and } (\text{Frac}(M[i] \cdot X[j]) < 2\varepsilon \text{ or } \text{Frac}(M[i] \cdot X[j]) > 1 - 2\varepsilon)$
15: \hspace{1cm} end for
16: if $t = \text{FALSE}$ then
17: \hspace{0.5cm} Delete($M[i]$) \hspace{0.5cm} // Delete the ith element of M
18: end if
19: end for
20: Append(K, M) \hspace{0.5cm} // Append array M to K
21: Sort(K)
22: if $K[1] = 0$ then
23: \hspace{0.5cm} Delete($K[1]$) \hspace{0.5cm} // Delete the zero value from K
24: end if
25: Return(K)
26: end procedure
Algorithm 5 Precalc

Description: The algorithm is based on Lemma 8. It generates Γ_n, a subset of Δ_Ω. In dimension n the set Γ_n contains exactly 2^n elements. Initially (line 2), the FindMMM algorithm is used. In higher dimensions ($2, 3, \ldots$ up to m) the algorithm produces many integers from Δ_Ω by which Γ_n can be generated. M is a matrix with i rows. The i^{th} row contains the binary representation of i. (Note: the size of M is changing depending on the dimension.) To produce as many integers as possible the Reduce algorithm is used (see lines 10, 11). If β goes to infinity then Δ_Ω should contain almost all possible step-sizes, not just some. To solve Challenge 2, we set $\beta = 2^{12}$. With this choice of β the algorithm is able to generate the appropriate Γ_n up to 10 dimensions. For higher dimensions bigger β is needed.

1: procedure Precalc(m, ϵ, X, β)
2: $T \leftarrow$ FindMMM($X[1], \epsilon$) \triangleright T is a dynamic array
3: for $n = 2 \rightarrow m$ do
4: $T2 \leftarrow$ dynamic array() \triangleright $N, T3$ are arrays with 2^n elements, every element is 0
5: $N \leftarrow 0, T3 \leftarrow 0$
6: $M \leftarrow 2^n \times n$ matrix, the i^{th} row contains the binary representation of i
7: $k \leftarrow 0, tmp \leftarrow 0, l \leftarrow 0, number \leftarrow 0$
8: while true do
9: if $l = 2^n$ and number $> \beta$ then
10: Reduce($T2, n, \epsilon, X$)
11: Reduce($T2, n, \epsilon, X$)
12: $T \leftarrow T2$
13: break \triangleright Leave the while loop
14: end if
15: for $i = 1 \rightarrow \text{length}(T)$ do
16: $t \leftarrow$ TRUE
17: for $j = 1 \rightarrow n - 1$ do
18: $ok \leftarrow \text{Frac}((k + T[i]) \cdot X[j])$
19: if $ok > \epsilon$ and $ok < 1 - \epsilon$ then
20: $t \leftarrow$ FALSE
21: break \triangleright Leave the for loop
22: end if
23: end if
24: if $t = \text{TRUE}$ then
25: $k \leftarrow k + T[i]$
26: break \triangleright Leave the for loop
27: end for
28: end for
Algorithm 6 Precalc (contd.)

29: number ← number + 1
30: t ← TRUE
31: for j = 1 → n do
32: t ← t and (FRAC(k · X[j]) < ε or FRAC(k · X[j]) > 1 − ε)
33: end for
34: if t = FALSE then
35: next
36: end if
37: t ← FALSE
38: for i = 1 → length(T2) do
39: if T2[i] = k − tmp then
40: t ← TRUE
41: end if
42: end for
43: if t = FALSE then
44: APPEND(T2, k − tmp) ▷ append k − tmp to the array T2
45: end if
46: tmp ← k
47: for i = 1 → 2^n do
48: t ← TRUE
49: for j = 1 → n do
50: if M[i, j] = 0 then
51: t ← t and (FRAC(k · X[j]) < ε)
52: else
53: t ← t and (FRAC(k · X[j]) > 1 − ε)
54: end if
55: end for
56: if t and N[i] = 0 then
57: N[i] ← 1
58: l ← l + 1
59: T3[l] ← k
60: if l = 2^n and n = m then
61: break(2) ▷ Leave while loop
62: end if
63: end if
64: end for
65: end while
66: end for
67: RETURN(T3)
68: end procedure
4 Practical use of our methods

The real power of the presented methods is the ability to use them in a distributed way.

There are several fields of mathematics where the techniques shown in this paper can be applied. We used our methods in order to find high peak values of the Riemann-zeta function effectively. It is computationally hard to find real \(t \) values where \(|\zeta(1/2 + it)|\) is high (see [11]). In 2004 Tadej Kotnik observed that large values of \(|\zeta(1/2 + it)|\) are expected when \(t = \frac{2k\pi}{\log 2} \), where \(k \) are close to an integer for all primes \(p_i > 2 \) [6]. The methods shown in this paper can be used to find thousands of candidates within a few minutes where high values of \(|\zeta(1/2 + it)|\) are expected. We plan to continue our research in this direction.

5 Acknowledgement

The authors would like to thank Prof. Dr. Antal Járai for his very helpful comments, suggestions and to the anonymous reviewers for many constructive comments. The research of the first author was partially supported by the European Union and co-financed by the European Social Fund (ELTE TÁMOP-4.2.2/B-10/1-2010-0030).

References

Received: April 10, 2013 • Revised: June 8, 2013