On multigraphic and potentially multigraphic sequences

Dedicated to the memory of Antal Iványi

Abstract. An r-graph (or a multigraph) is a loopless graph in which no two vertices are joined by more than r edges. An r-complete graph on n vertices, denoted by $K_n^{(r)}$, is an r-graph on n vertices in which each pair of vertices is joined by exactly r edges. A non-increasing sequence $\pi = (d_1, d_2, \ldots, d_n)$ of non-negative integers is said to be r-graphic if it is realizable by an r-graph on n vertices. An r-graphic sequence π is said to be potentially $S_{LM}^{(r)}$-graphic if it has a realization containing $S_{LM}^{(r)}$ as a subgraph. We obtain conditions for an r-graphic sequence to be potentially $S_{LM}^{(r)}$-graphic. These are generalizations from split graphs to p-tuple r-split graph.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C07
Key words and phrases: multigraph, multigraphic sequence, potentially multigraphic sequences, split graph
1 Introduction

For a positive integer \(r \), an \(r \)-graph(or multigraph) is a loopless graph in which no two vertices are joined by more than \(r \) edges. An \(r \)-complete graph on \(n \) vertices, denoted by \(K_{n}^{(r)} \), is an \(r \)-graph on \(n \) vertices in which each pair of vertices is joined by exactly \(r \) edges. Clearly, \(K_{n}^{(1)} = K_{n} \). A non-increasing sequence \(\pi = (d_{1}, d_{2}, \ldots, d_{n}) \) of non-negative integers is said to be \(r \)-graphic if it is the degree sequence of an \(r \)-graph \(G \) on \(n \) vertices, and such an \(r \)-graph \(G \) is referred to as a realization of \(\pi \). We take \(\sigma(\pi) = \sum_{i=1}^{n} d_{i} \). For graph theoretical notations and definitions we refer to [9].

Let \(\pi = (d_{1}, d_{2}, \ldots, d_{n}) \) be a non-increasing sequence of non-negative integers with \(d_{1} \leq \sum_{i=2}^{n} \min\{r, d_{i}\} \). Define \(\pi'_{k} = (d'_{1}, d'_{2}, \ldots, d'_{n-1}) \) to be the non-increasing rearrangement of the sequence obtained from

\[
(d_{1}, d_{2}, \ldots, d_{k-1}, d_{k+1}, \ldots, d_{n})
\]

by reducing by 1 the remaining largest terms that have not been reduced \(r \) times, and repeating the procedure \(d_{k} \) times. \(\pi'_{k} \) is called the residual sequence obtained from \(\pi \) by laying off \(d_{k} \).

The following three results due to Chungphaisian [2] are generalizations from 1-graphs to \(r \)-graphs of three well-known results, one by Erdős and Gallai [3], one by Kleitman and Wang [6] and one by Fulkerson, Hoffman and Mcandrew [5].

Theorem 1 [2] Let \(\pi = (d_{1}, d_{2}, \ldots, d_{n}) \) be a non-increasing sequence of non-negative integers, where \(\sigma(\pi) \) is even. Then \(\pi \) is \(r \)-graphic if and only if for each positive integer \(t \leq n \),

\[
\sum_{i=1}^{t} d_{i} \leq rt(t-1) + \sum_{i=t+1}^{n} \min\{rt, d_{i}\}.
\]

Theorem 2 [2] \(\pi \) is \(r \)-graphic if and only if \(\pi'_{k} \) is \(r \)-graphic.

Let the subgraph \(H \) on the vertices \(v_{1}, v_{j}, v_{k}, v_{l} \) of a multigraph \(G \) contain the edges \(v_{1}v_{j} \) and \(v_{k}v_{l} \). The operation of deleting these edges and introducing a pair of new edges \(v_{1}v_{k} \) and \(v_{j}v_{l} \), or \(v_{j}v_{k} \) and \(v_{1}v_{l} \) is called an elementary degree preserving transformation. If this operation is performed \(r \) times on the same edge set, it is called \(r \)-exchange.
Theorem 3 [2] Let \(\pi \) be an \(r \)-graphic sequence, and let \(G \) and \(G' \) be realizations of \(\pi \). Then there is a sequence of \(r \)-exchanges, \(E_1, \ldots, E_k \) such that the application of these \(r \)-exchanges to \(G \) in order will result in \(G' \).

An \(r \)-graphic sequence \(\pi \) is said to be potentially \(K_{m+1}^{(r)} \) if there exists a realization of \(\pi \) containing \(K_{m+1}^{(r)} \) as a subgraph. If \(\pi \) has a realization \(G \) containing \(K_{m+1}^{(r)} \) on the \(m+1 \) vertices of highest degree in \(G \), then \(\pi \) is said to be potentially \(A_{m+1}^{(r)} \)-graphic. As a special case of Lemma 2.1 in [13], Yin showed that an \(r \)-graphic sequence is potentially \(K_{m+1}^{(r)} \)-graphic if and only if it is potentially \(A_{m+1}^{(r)} \)-graphic.

The \(r \)-join (complete product) of two \(r \)-graphs \(G_1 \) and \(G_2 \) is a graph \(G = G_1 \cup G_2 \) with vertex set \(V(G_1) \cup V(G_2) \) and the edge set consisting of all edges of \(G_1 \) and \(G_2 \) together with the edges joining each vertex of \(G_1 \) with every vertex of \(G_2 \) by exactly \(r \) edges. Let \(K_l^{(r)} \) and \(K_m^{(r)} \) be complete \(r \)-graphs with \(l \) and \(m \) vertices respectively, that is the complete graphs having exactly \(r \) edges between every two vertices. The \(r \)-split graph of \(K_l^{(r)} \) and \(K_m^{(r)} \) denoted by \(S_{l,m}^{(r)} \) is the graph \(K_l^{(r)} \cup K_m^{(r)} \) having \(l + m \) vertices, where \(K_m^{(r)} \) (having no edges) is the complement of \(K_l^{(r)} \). [14]. If \(\pi \) has a realization \(G \) containing \(S_{l,m}^{(r)} \) on the \(l + m \) vertices of highest degree in \(G \), then \(\pi \) is said to be potentially \(A_{l,m}^{(r)} \)-graphic.

The following two results due to Yin [13] are generalizations from 1-graphs to \(r \)-graphs of two well-known results given by A. R. Rao [12].

Theorem 4 [13] Let \(n \geq l + 1 \) and \(\pi = (d_1, d_2, \ldots, d_n) \) be an \(r \)-graphic sequence with \(d_{l+1} \geq rl \). Then \(\pi \) is potentially \(A_{l+1}^{(r)} \)-graphic if and only if \(\pi_{l+1} \) is \(r \)-graphic.

Theorem 5 [13] Let \(n \geq l + 1 \) and \(\pi = (d_1, d_2, \ldots, d_n) \) be an \(r \)-graphic sequence with \(d_{l+1} \geq 2rl - 1 \), then \(\pi \) is potentially \(K_{l+1}^{(r)} \).

An extremal problem for 1-graphic sequences to be potentially \(K_l^{(1)} \)-graphic was considered by Erdős, Jacobson and Lehel [4] and solved by Li et al. [7, 8]. Yin [13] generalized this extremal problem and the Erdős-Jacobson-Lehel conjecture from 1-graphs to \(r \)-graphs.

In 2014, the authors [10] proved the following assertion.
Theorem 6 [10] If \(G_1 \) is a realization of \(\pi_1 = (d_1^1, \ldots, d_m^1) \) containing \(K_p \) as a subgraph and \(G_2 \) is a realization of \(\pi_2 = (d_1^2, \ldots, d_n^2) \) containing \(K_q \) as a subgraph, then the degree sequence \(\pi = (d_1, \ldots, d_{m+n}) \) of the join of \(G_1 \) and \(G_2 \) is potentially \(K_{p+q} \)-graphic.

The following two results for simple graphs are due to Yin [14].

Theorem 7 [14] \(\pi \) is potentially \(\bar{A}_{l,m} \)-graphic if and only if \(\pi_l \) is graphic.

Theorem 8 [14] Let \(n \geq 1 + m \) and let \(\pi = (d_1, d_2, \ldots, d_n) \) be a non-increasing graphic sequence. If \(d_{l+m} \geq 2l + m - 2 \), then \(\pi \) is potentially \(\bar{A}_{l,m} \)-graphic.

A condition for a graphic sequence \(\pi \) to be potentially \(K_4 - e \) graphic can be found in [11], where \(K_4 - e \) is the graph obtained from the complete graph \(K_4 \) by deleting one edge \(e \).

2 Bounds on the sum of squares of degrees of a multigraph

From the Cauchy-Schwarz inequality, we have
\[
\sum_{i=1}^{n} |a_i b_i| \leq \left(\sum_{i=1}^{n} |a_i|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |b_i|^2 \right)^{\frac{1}{2}},
\]

Taking \(a_i = d_i \) and \(b_i = 1 \), we have \(\left(\sum_{i=1}^{n} d_i \right)^2 \leq n \sum_{i=1}^{n} d_i^2 \) which implies
\[
\frac{1}{n} \left(\sum_{i=1}^{n} d_i \right)^2 \leq \left(\sum_{i=1}^{n} d_i^2 \right).
\]

From this and the hand shaking Lemma \(\sum_{i=1}^{n} d_i = 2|E| \), we have
\[
\frac{4|E|^2}{n} = \frac{1}{n} \left(\sum_{i=1}^{n} d_i \right)^2 \leq \sum_{i=1}^{n} d_i^2.
\]

Now we have the following observation, the proof is by using the same argument as in Theorem 1 of [1].

Lemma 9 For an \(r \)-graph \(G \), \(\sum_{i=1}^{n} d_i^2 \leq |E|(r(n - 2) + \frac{2|E|}{n-1}) \).
Remark 10 From Lemma 9, we observe that

\[
\frac{4|E|^2}{n} \leq \sum_{i=1}^{n} d_i^2 \leq |E|(n-2) + \frac{2|E|}{n-1}.
\]

The following example shows that the equality does not hold in the above inequality.

Example 11 Consider the 2-graph as shown in Figure 1.

Here, \(\frac{4|E|^2}{n} = \frac{4 \times 16^2}{6} = 3 \frac{12}{5} < 4^2 + 6^2 + 6^2 + 6^2 + 6^2 = 176 < 16(2(6-2) + \frac{2 \times 16}{6-1}) = \frac{152}{3}\).

Now, we have the following result.

Lemma 12 A multigraph \(G\) is regular if and only if \(\frac{4|E|^2}{n} = \sum_{i=1}^{n} d_i^2\).

Proof. Suppose an \(r\)-graph \(G\) is regular of degree \(b\). Then \(2|E| = nb\) and \(d_i = b\) for all \(i = 1, 2, \ldots, n\). We know that \(\sum_{i=1}^{n} d_i^2 = nb^2\) and \(\frac{4|E|^2}{n} = \frac{1}{n}d_1^2 - b^2 = nb^2\).

These together give \(\sum_{i=1}^{n} d_i^2 = \frac{4|E|^2}{n}\).

Conversely, suppose that \(\sum_{i=1}^{n} d_i^2 = \frac{4|E|^2}{n}\). Then \(\frac{4}{n}|E|^2 = \sum_{i=1}^{n} d_i^2\). This implies that

\[
\frac{1}{n}(d_1^2 + d_2^2 + \ldots + d_n^2 + 2(d_1d_2 + d_1d_3 + \ldots + d_1d_n) + \ldots + 2(d_{n-2}d_{n-1} + d_{n-2}d_n) + 2(d_{n-1}d_n)) - (d_1^2 + d_2^2 + \ldots + d_n^2) = 0,
\]

which on simplification gives
A bipartite multigraph

Definition 15

\[r \text{ Potentially } r \]

\[3 \text{ -graphic sequences} \]

Lemma 13 Let \(G \) be an \(r \)-graph with \(n > 2 \) vertices. Then \(G \) is a complete graph \(K_n \) if and only if \(\frac{4|E|^2}{n} = \sum_{i=1}^{n} d_i^2 = |E|(r(n - 2) + \frac{2|E|}{n - 1}) \).

Proof. First we note that an \(r \)-graph \(G \) is a complete \(r \)-graph if and only if \(|E| = \frac{1}{2}rn(n - 1) \). Moreover, we know that \(|E| = \frac{1}{2}nr(n - 1) \), which implies that \(2|E|(n - 2) + 2|E|n = nr(n - 1)(n - 2) + 2|E|n \) and on simplification gives \(\frac{4|E|^2}{n} = |E|(r(n - 2) + \frac{2|E|}{n - 1}) \). Thus the result follows.

The following result partially answers the question raised in Remark 10.

Theorem 14 A bipartite multigraph \(G = K_n^{(r)} \), where \(m > 1 \), is an \(r \)-star graph \(K_n^{(r)} \) if and only if \(\sum_{i=1}^{n} d_i^2 = |E|(r(n - 2) + \frac{2|E|}{n - 1}) \).

Proof. Let \(K_n^{(r)} \) be an \(r \)-complete bipartite graph, where \(m > 1 \), \(n = l + m \) and \(|E| = rlm \). There are \(l \)-vertices each of whose degree is \(r \times m \) and \(m \) vertices each of whose degree is \(r \times l \), so \(\sum_{i=1}^{n} d_i^2 = l(rm)^2 + m(rl)^2 = lr^2m^2 + mr^2l^2 = r^2(lm^2 + ml^2) = r^2lm(l + m) \). Therefore, we have \(|E|(r(n - 2) + \frac{2|E|}{n - 1}) = rlm(1 + l + m - 2) = r^2lm(l + m) \), which gives \(l = 1 \). Hence the result follows.

3 Potentially \(r \)-graphic sequences

Definition 15 Let \(S_n^{(r)} \), \(S_{r_2,s_2}^{(r)} \), \(S_{r_3,s_3}^{(r)} \), \(S_{r_p,s_p}^{(r)} \) be \(r \)-split graphs, respectively with \(r_1 + s_1 \), \(r_2 + s_2 \), \(r_p + s_p \) vertices. Let \(L = \sum_{i=1}^{p} r_i \) and \(M = \sum_{i=1}^{p} s_i \). Then
the \(p \)-tuple \(r \)-split graph, denoted by \(S_{L,M}^{(r)} \), is the graph

\[
S_{L,M}^{(r)} = \bigoplus_{i=1}^{p} S_{r_{i},s_{i}}^{(r)} = \bigoplus_{i=1}^{p} S_{r_{i},s_{i}}^{(r)} \vee \bigoplus_{i=1}^{p} S_{r_{i},s_{i}}^{(r)}.
\]

Clearly \(S_{L,M}^{(r)} \) has vertex set \(\bigcup_{i=1}^{p} V(S_{r_{i},s_{i}}^{(r)}) \) and the edge set consists of all edges of \(S_{r_{i},s_{i}}^{(r)} \), together with the edges joining each vertex of \(S_{r_{i},s_{i}}^{(r)} \) with every vertex of \(S_{r_{j},s_{j}}^{(r)} \) by exactly \(r \)-edges for every \(i, j \) with \(i \neq j \).

An \(r \)-graphic sequence \(\pi \) is said to be potentially \(S_{L,M}^{(r)} \)-graphic if there exists a realization of \(\pi \) containing \(S_{L,M}^{(r)} \) as a subgraph. If \(\pi \) has a realization \(G \) containing \(S_{L,M}^{(r)} \) on the \(L + M \) vertices of highest degree in \(G \), then \(\pi \) is said to be potentially \(A_{L,M}^{(r)} \)-graphic.

Let \(n \geq L + M \) and let \(\pi = (d_1, \ldots, d_n) \) be a non-increasing sequence of non-negative integers with \(d_L \geq r(L + M) - 1 \) and \(d_{L+M} \geq rL \). We define sequences \(\pi_1, \ldots, \pi_L \) as follows. Construct the sequence

\[
\pi_1 = (d_2 - r, \ldots, d_L - r, d_{L+1} - r, \ldots, d_{L+M} - r, d_{L+M+1}^1, \ldots, d_n^1)
\]

from \(\pi \) by reducing 1 from the largest term that have not been already reduced \(r \) times, and then reordering the last \(n - L - M \) terms to be non-increasing. For \(2 \leq i \leq r \), construct

\[
\pi_i = (d_{i+1} - ir, \ldots, d_L - ir, d_{L+i-1} - ir, \ldots, d_{L+M} - ir, d_{L+i+1}^i, \ldots, d_n^i)
\]

from

\[
\pi_{i-1} = (d_i - (i-1)r, \ldots, d_L - (i-1)r, d_{L+1} - (i-1)r, \ldots, d_{L+M} - (i-1)r, d_{L+i}^{i-1}, \ldots, d_n^{i-1})
\]

by deleting \(d_i - (i-1)r \), reducing the first \(d_i - (i-1)r \) remaining terms of \(d_{i-1} \) by one that have not been already reduced \(r \) times, and then reordering the last \(n - L - M \) terms to be non-increasing.

We start with the following lemma.
Lemma 16 If $\pi = (d_1, d_2, \ldots, d_m)$ is the graphic sequence of $S^r_{L,M}$, then

$$\pi = \left(\left(\sum_{i=1}^m r(r_i + s_i - 1) \right)^{\tau_i}, \left(\sum_{i=1}^m rr_i + \sum_{i=1, i\neq j}^m rs_i \right)^{s_j} \right), \text{ for } j = 1, 2, \ldots, m.$$

Proof. To prove the result we use induction on m.

For $m = 1$, the result is obviously true. For $m = 2$, we have $S^r_{1,2}$.

Therefore for every $i = 1, 2, \ldots, r_1$ and $i = 1, 2, 3, \ldots, s_1$ and $j = 1, 2, 3, \ldots, s_2$

$$\bar{d}_i = d_i + r(r_2 + s_2) \eqno(1)$$

and

$$\bar{d}_j = r(r_1 + r_2 + s_2), \eqno(2)$$

where \bar{d}_i and \bar{d}_j are respectively the degree of \bar{v}_i and \bar{v}_j vertex in $S^r_{r_1+r_2,s_1+s_2}$ and d_i is the degree of ith vertex in K_{r_1}. Equations (1) and (2) hold for every i, j. Thus the graphic sequence π^2 of $S^r_{r_1+r_2, s_1+s_2}$ is

$$\pi^2 = \left(\left(\sum_{i=1}^2 r(r_i + s_i - 1) + r(r_2 + s_2) \right)^{\tau_i}, \left(\sum_{i=1}^2 rr_i + \sum_{i=1, i\neq j}^m rs_i \right)^{s_j} \right).$$

This shows that the result is true for $m = 2$. Assume that the result holds for $m = k - 1$, therefore for all $j = 1, 2, \ldots, k - 1$,

$$\pi^{k-1} = \left(\left(\sum_{i=1}^{k-1} r(r_i + s_i - 1) \right)^{\tau_i}, \left(\sum_{i=1}^{k-1} rr_i + \sum_{i=1, i\neq j}^{k-1} rs_i \right)^{s_j} \right), \text{ for } j = 1, 2.$$

Now for $m = k$,

$$G = S^r_{r_1,s_1} \lor S^r_{r_2,s_2} \lor \ldots \lor S^r_{r_{k-1},s_{k-1}} \lor S^r_{r_k,s_k} = A \lor S^r_{r_k,s_k}, \text{ where } A = S^r_{r_1,s_1} \lor S^r_{r_2,s_2} \lor \ldots \lor S^r_{r_{k-1},s_{k-1}}.$$
Since the result is proved for all $m = k - 1$ and using the fact that the result is proved for each pair and since the result is already proved for $k = 2$, it follows by induction hypothesis that result holds for $m = k$ also. That is,

$$
\pi = \left(\left(\sum_{i=1}^{k} r_i (r_i + s_i - 1) \right)^{r_j} \left(\sum_{i=1}^{k} r_i r_j + \sum_{i=1, i \neq j}^{k} r_i s_i \right) \right), \quad \text{for } j = 1, 2, \ldots, k
$$

This proves the lemma. \hfill \Box

Lemma 17 A non-increasing integer sequence $\pi = (d_1, \ldots, d_n)$ is potentially $A_{L,M}^{(r)}$-graphic if and only if it is potentially $S_{L,M}^{(r)}$-graphic.

Proof. We only need to prove that if $\pi = (d_1, \ldots, d_n)$ is potentially $S_{L,M}^{(r)}$-graphic, then it is potentially $A_{L,M}^{(r)}$-graphic. We choose a realization G of π with vertex set $V(G) = \{v_1, \ldots, v_n\}$ such that $d_G(v_i) = d_i$ for $1 \leq i \leq n$, the induced r-subgraph $G[\{v_1, \ldots, v_{L+M}\}]$ of $\{v_1, \ldots, v_{L+M}\}$ in G contains $S_{L,M}^{(r)}$ as its r-subgraph and $|V(K_L^{(r)}) \cap \{v_1, \ldots, v_L\}|$ is maximum. Denote $H = G[\{v_1, \ldots, v_{L+M}\}]$. If $|V(K_L^{(r)}) \cap \{v_1, \ldots, d_i\}| = L$, that is, $V(K_L^{(r)}) = \{v_1, \ldots, v_L\}$, then π is potentially $A_{L,M}^{(r)}$-graphic. Assume that $|V(K_L^{(r)}) \cap \{v_1, \ldots, v_L\}| < L$.

Then there exists $v_i \in \{v_1, \ldots, v_L\} \setminus V(K_L^{(r)})$ and a $v_j \in V(K_L^{(r)}) \setminus \{v_1, \ldots, v_L\}$. Let $A = N_H(v_j) \setminus (\{v_i\} \cup N_H(v_i))$ and $B = N_G(v_j) \setminus (\{v_i\} \cup N_G(v_i))$. Since $d_G(v_i) \geq d_G(v_j)$, we have $|B| \geq |A|$. Let C be any subset of B such that $|C| = |A|$. Now form a new realization G' of π by a sequence of r-exchanges to the r-edges of the star centralized at v_j with end vertices in A with the non r-edges of the star centralized at v_j with end vertices in C, and by a sequence of r-exchange the r-edges of the star centralized at v_i with end vertices in C with the non r-edges of the star centralized at v_i with end vertices in A. It is easy to see that G' contains $S_{L,M}^{(r)}$ on $\{v_1, \ldots, v_{L+M}\}$ so that $|V(K_L^{(r)}) \cap \{v_1, \ldots, v_L\}|$ is larger than that of G, which contradicts to the choice of G. \hfill \Box

We use the Havel-Hakimi procedure to test whether or not an r-graphic sequence π is potentially $A_{L,M}^{(r)}$-graphic.

Theorem 18 For $r \geq 1$ and $n \geq 1$, an r-graphic sequence $\pi = (d_1, \ldots, d_n)$ is potentially $A_{L,M}^{(r)}$-graphic if and only if π_L is r-graphic.

Proof. Assume that π is potentially $A_{L,M}^{(r)}$-graphic. Then π has a realization G with the vertex set $V(G) = \{v_1, \ldots, v_n\}$ such that $d_G(v_i) = d_i$ for $(1 \leq i \leq n)$
and G contains $S_{L,M}^{(r)}$ on the vertices v_1,\ldots,v_{L+M}, where $L + M \leq n$, so that $V^{(r)}(K_L) = \{v_1,\ldots,v_L\}$ and $V(LM^{(r)}) = \{v_{L+1},\ldots,v_{L+M}\}$. By applying a sequence of r-exchanges to G in order we will show that there is one such realization G' such that $G' \setminus v_1$ has degree sequence π_1. If not, we may choose such a realization H of r-graphic sequence π such that the number of vertices adjacent to v_1 in $\{v_{L+M+1},\ldots,v_{d+1}\}$ is maximum. Let $v_i \in \{v_{L+M+1},\ldots,v_{d+1}\}$ and assume that there is no edge between v_1 and v_i and let $v_j \in \{v_{d+2},\ldots,v_n\}$ and there are r edges between v_1 and v_j. We may assume that $d_i > d_j$. Hence there is a vertex $v_t, t \neq i, j$ such that there are r edges between v_t and v_1 and no edge between v_t and v_j. Clearly $G = (H \setminus (v_i^{(r)}v_j, v_i^{(r)}v_t)) \cup (v_i^{(r)}v_t, v_i^{(r)}v_j)$ (where $v_i^{(r)}v_j$ means that there are r edges between v_i and v_j) is a realization of π such that $d_G(v_i) = d_i$ for $1 \leq i \leq n$, G contains $S_{L,M}^{(r)}$ on v_1,\ldots,v_{L+M} with $V^{(r)}(K_L) = \{v_1,\ldots,v_L\}$ and $V(LM^{(r)}) = \{v_{L+1},\ldots,v_{L+M}\}$ and H has the number of vertices adjacent to v_1 in $\{v_{L+M+1},\ldots,v_{d+1}\}$ larger than that of H. This contradicts the choice of H. Repeating this procedure, we can see that π_t is potentially $A_{L-M}^{(r)}$-graphic successively for $i = 2,\ldots,L$. In particular, π_L is r-graphic.

Conversely, suppose that π_t is r-graphic and is realized by a graph G_t with a vertex set $V(G_t) = \{v_{L+1},\ldots,v_n\}$ such that $d_{G_t}(v_i) = d_i$ for $1 \leq i \leq n$. For $i = L, L-1,\ldots,1$ form G_{t-1} from G_i by adding a new vertex v_i that is adjacent to each of v_{i+1},\ldots,v_{L+M} with r-edges and also to the vertices of G_i with degrees $\frac{s_{i-1}^{L+M+i-1}-r}{r},\ldots,\frac{d_{i+1}^{L+M+i-1}-r}{r}$. Then for each i, G_i has degrees given by π_i and G_i contains $S_{L-M}^{(r)}$ on $L+M-i$ vertices v_{i+1},\ldots,v_{L+M} whose degrees are $d_i + r,\ldots,d_L + r$ so that $V(K_{L-M}^{(r)}) = \{v_{i+1},\ldots,v_L\}$ and $V(K_{L+M}^{(r)}) = \{v_{L+1},\ldots,v_{L+M}\}$. In particular, G_0 has degrees given by π and contains $S_{L,M}^{(r)}$ on $L+M$ vertices v_1,\ldots,v_{L+M} whose degrees are $d_1,\ldots,d_L + r$ so that $V(K_L^{(r)}) = \{v_1,\ldots,v_L\}$ and $V(K_{L+M}^{(r)}) = \{v_{L+1},\ldots,v_{L+M}\}$. Hence the result follows.

The following is a sufficient condition for an r-graphic sequence to be potentially $A_{L,M}^{(r)}$-graphic.

Theorem 19 Let $n \geq L + M$ and let $\pi = (d_1,\ldots,d_n)$ be an r-graphic sequence. If $d_{L+M} \geq 2rL + rM - 2$, then π is potentially $A_{L,M}^{(r)}$-graphic.

Proof. Let $n \geq L + M$ and let $\pi = (d_1,\ldots,d_n)$ be a non-increasing r-graphic sequence with $d_{L+M} \geq 2rL + rM - 2$. By using the argument similar
to Theorem 8, \(\pi \) is potentially \(K_{L}^{(r)} \)-graphic and hence by Lemma 17, \(A_{L}^{(r)} \)-graphi
c. Therefore, we assume that \(G \) is a realization of \(\pi \) with a vertex set \(V(G) = \{v_1, \ldots, v_n\} \) such that \(d_{G}(v_i) = d_i, \ (1 \leq i \leq n) \) and \(G \) contains \(K_{L}^{(r)} \) on \(\{v_1, \ldots, v_L\} \), that is, \(V(K_{L}^{(r)}) = \{v_1, \ldots, v_L\} \) and

\[
t = e_{G}(\{v_1, \ldots, v_{rL}, \ldots, v_{L+1}, \ldots, v_{L+s_1}, \ldots, v_{L+M}\})
\]

(that is, the number of edges between \(\{v_1, \ldots, v_L\} \) and \(\{v_{L+1}, \ldots, v_{L+M}\} \)) is maximum. If \(t = rLM + rs_{1}s_{2} + s_{j} \sum_{i=1}^{j-1} rs_{i} \), for \(j = 3, 4, \ldots, p \), then the cardinality of the edge set of \(S_{L,M}^{(r)} \) is same as \(t \) and therefore \(G \) contains \(S_{L,M}^{(r)} \) on the vertices \(v_{1}, v_{2}, \ldots, v_{L+M} \) with \(V[\{K_{M}\}] = \{v_{1}, v_{2}, \ldots, v_{L}\} \) and

\[
V(\bar{K}_{M}^{(r)}) = \{v_{L+1}, v_{L+2}, \ldots, v_{L+s_{1}}, \ldots, v_{L+M}\}.
\]

In other-words, \(\pi \) is potentially \(\bar{A}_{L,M}^{(r)} \)-graphic. Assume that \(t < rLM + rs_{1}s_{2} + s_{j} \sum_{i=1}^{j-1} rs_{i} \), for \(j = 3, 4, \ldots, p \). Then there exists a \(v_{k} \in \{v_{1}, v_{2}, \ldots, v_{s_{1}}\} \) and \(v_{m} \in \{v_{s_{1}+1}, v_{s_{1}+2}, \ldots, v_{s_{1}+s_{2}}\}, (i \neq j) \) such that \(v_{k}v_{m} \notin E(G) \). Let

\[
A = N_{G}\backslash v_{s_{1}+1}, v_{s_{1}+2}, \ldots, v_{s_{1}+s_{2}}(v_{k}) \setminus N_{G}\backslash v_{1}, v_{2}, \ldots, v_{s_{1}}(v_{m})
\]

and

\[
B = N_{G}\backslash v_{s_{1}+1}, v_{s_{1}+2}, \ldots, v_{s_{1}+s_{2}}(v_{k}) \cap N_{G}\backslash v_{1}, v_{2}, \ldots, v_{s_{1}}(v_{m}).
\]

Then \(e_{G}(x, y) = r \) for \(x \in N_{G}\backslash v_{1}, \ldots, v_{L}(v_{m}) \) and \(y \in N_{G}\backslash v_{L+1}, \ldots, v_{L+M}(v_{k}) \). Otherwise, if \(e_{G}(x, y) < r \), then \(G' = (G \setminus \{v_{m}^{(r)}y, v_{m}^{(r)}x\}) \cup \{v_{k}^{(r)}v_{m}, x^{(r)}y\} \) is a realization of \(\pi \) and contains \(\bar{S}_{L,M}^{(r)} \) on \(v_{1}, \ldots, v_{L+M} \) with \(V(K_{M}^{(r)}) = \{v_{1}, \ldots, v_{L}\} \) and \((\bar{K}_{M}^{(r)}) = \{v_{L+1}, \ldots, v_{L+M}\} \) such that

\[
e_{G'}(\{v_{1}, \ldots, v_{L}\}, \{v_{L+1}, \ldots, v_{L+M}\}) > t,
\]

which contradicts the choice of \(G \). Thus \(B \) is \(r \)-complete. We consider the following cases.

Let \(A = \emptyset \). Then \(2rL + rM - 2 \leq d_{k} = d_{G}(v_{k}) < rL + rM - 1 + r|B| \), and so \(|B| \geq rL \). Since each vertex in \(N_{G}\backslash v_{1}, \ldots, v_{L}(v_{m}) \) is adjacent to each vertex in \(B \) by \(r \) edges and \(|N_{G}\backslash v_{1}, \ldots, v_{L}(v_{m})| \geq 2rL + rM - 2 = rL + rM - 1 \). It can be easily seen that the \(r \) induced subgraph of \(N_{G}\backslash v_{1}, \ldots, v_{L}(v_{m}) \cup \{v_{m}\} \) in \(G \) contains \(\bar{S}_{L,M}^{(r)} \).
as a subgraph. Thus \(\pi \) is potentially \(\overline{A}_{LM}^{(r)} \)-graphic.

Let \(A \neq \emptyset \). Let \(a \in A \). If there are \(x, y \in N_{G \setminus \{v_1, \ldots, v_L\}}(v_m) \) such that \(e_G(x, y) < r \) then \(G' = (G \setminus \{v_m, a\}) \cup \{v_k, v_m, x, y\} \) is a realization of \(\pi \) and contains \(\overline{S}_{LM}^{(r)} \) on \(v_1, \ldots, v_L \) with \(V(K_L^{(r)}) = \{v_1, \ldots, v_L\} \) and \(V(K_M^{(r)}) = \{v_{L+1}, \ldots, v_{L+M}\} \) such that \(e_{G'}(\{v_1, \ldots, v_L\}, \{v_{L+1}, \ldots, v_{L+M}\}) > t \) which contradicts the choice of \(G \). Thus \(N_{G \setminus \{v_1, \ldots, v_L\}}(v_m) \) is \(r \)-complete. Since

\[|N_{G \setminus \{v_1, \ldots, v_L\}}(v_m)| \geq rL + rM - 1 \quad \text{and} \quad e_{G}(v_m, z) = r, \]

for any \(z \in N_{G \setminus \{v_1, \ldots, v_L\}}(v_m) \), it is easy to see that the induced \(r \)-subgraph of \(N_{G \setminus \{v_1, \ldots, v_L\}}(v_m) \cup \{v_m\} \) in \(G \) is \(r \)-complete, and so contains \(\overline{S}_{LM}^{(r)} \) as a \(r \)-subgraph. Thus \(\pi \) is potentially \(\overline{A}_{LM}^{(r)} \)-graphic. \(\square \)

Theorem 20 If \(\pi = (d_1, d_2, \ldots, d_n) \) is an \(r \)-graphic sequence such that \(\sigma(\pi) \) is at least \((n^2 - 3n + 8) r \), then \(\pi \) is potentially \(K_4^{(r)} \)-graphic.

Proof. Let \(\pi = (d_1, d_2, \ldots, d_n) \) be an \(r \)-graphic sequence such that \(d_1 \geq d_2 \geq \ldots \geq d_n \geq 1 \) and \(\sigma(\pi) = (n^2 - 3n + 8) r \). Suppose \(G \) is a graphical realization of \(\pi \) and \(e(G) \) is the size of \(G \). Then \(2e(G) = \sigma(\pi) \) and \(2e(G^c) = nb(n - 1) - \sigma(\pi) = nr(n - 1) - (n^2 - 3n + 6)r = r(2n - 6) \), so that \(e(G^c) = r(n - 3) \), where \(G^c \) is the complement of the \(r \)-graph \(G \). An extremal problem is \(r \)-graph \(G \) is obtained by deleting \(r(n - 3) \) independent edges from the complete \(r \)-graph \(K_n^{(r)} \) of order \(n \). Hence the largest vertex number of independent sets in \(G^c \) is 3. This implies that the largest possible complete \(r \)-subgraph of \(G \) is of order 3. As \(1 \leq n - 3 \leq 3 \). Hence there is no complete \(r \)-subgraph of order 4 in \(G \). Therefore, we have

\[\sigma(K_4^{(r)}, n) \geq (n^2 - 3n + 6)r + 2r = (n^2 - 3n + 8)r \]

Now Suppose that \(\pi = (d_1, d_2, \ldots, d_n) \) is \(r \)-graphic sequence with \(d_1 \geq d_2 \geq \ldots \geq d_n \geq r \) and \(\sigma(\pi) \geq (n^2 - 3n + 8) r \). Then every graphical realization \(G \) of \(\pi \) is obtained by removing at most \(r(n - 4) \) edges from the \(r \)-complete graph \(K_n^{(r)} \). Hence the maximal complete subgraph of \(G \) has order at least \(n - (n - 4) = 4 \). Thus \(G \) is potentially \(K_4^{(r)} \). In other words,

\[\sigma(K_4^{(r)}, n) \leq (n^2 - 3n + 8)r \quad (3) \]

Combining (3) and (4), the result follows. \(\square \)

Acknowledgements. The authors thank the anonymous referee for his useful comments and suggestions.
On multigraphic and potentially multigraphic sequences

References

Received: November 30, 2016 • Revised: January 19, 2017