Abstract. Making use of convolution product, we introduce a novel subclass of \(p\)-valent analytic functions with negative coefficients and obtain coefficient bounds, extreme points and radius of starlikeness for functions belonging to the generalized class \(TP^{k,p}_{b,\mu}(\lambda, \alpha, \beta)\). We also derive results for the modified Hadamard products of functions belonging to the class \(TP^{k,p}_{b,\mu}(\lambda, \alpha, \beta)\).

1 Introduction

Denote by \(A_p\) the class of functions \(f\) normalized by

\[
f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k}z^{p+k}, \quad (p \in \mathbb{N} = 1, 2, 3, ...)
\]

which are analytic and \(p\)-valent in the open disc \(U = \{z : z \in \mathbb{C}, |z| < 1\}\). Denote by \(T_p\) a subclass of \(A_p\) consisting of functions of the form

\[
f(z) = z^p - \sum_{k=1}^{\infty} a_{p+k}z^{p+k}, \quad (a_{p+k} \geq 0; p \in \mathbb{N} = 1, 2, 3, ..., z \in U).
\]
For functions $f \in A_p$ given by (1) and $g \in A_p$ given by $g(z) = z^p + \sum_{k=1}^{\infty} b_{p+k}z^{p+k}$, we define the Hadamard product (or convolution) of f and g by

$$(f \ast g)(z) = z^p + \sum_{k=1}^{\infty} a_{p+k}b_{p+k}z^{p+k} = (g \ast f)(z), \quad z \in U. \quad (3)$$

The following we recall a general Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ defined by (see [23])

$$\Phi(z, s, a) := \sum_{k=0}^{\infty} \frac{z^k}{(k + a)^s} \quad (4)$$

where, as usual, $Z_0^{-} := \mathbb{Z}\{0\} \setminus \mathbb{N}$ ($\mathbb{Z} := \{0, \pm 1, \pm 2, \pm 3, ..., \}; \mathbb{N} := \{1, 2, 3, ..., \}$). Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ are found in the recent investigations by Choi and Srivastava [4], Ferreira and Lopez [5], Garg et al. [7], Lin and Srivastava [10], Lin et al. [11], and others.

For the class of analytic functions denote by A consisting of functions of the form $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ Srivastava and Attiya [22] (see also Raducanu and Srivastava [17], and Prajapat and Goyal [14]) introduced and investigated the linear operator:

$$J_{\mu, b} : A_p \rightarrow A_p$$

defined in terms of the Hadamard product (or convolution) by

$$J_{\mu, b} f(z) = G_{b, \mu} \ast f(z) \quad (5)$$

(z \in U; $b \in \mathbb{C \setminus \{Z_0^{-}\}}; \mu \in \mathbb{C}; f \in A$), where, for convenience,

$$G_{\mu, b}(z) := (1 + b)^{\mu} \Phi(z, \mu, b) - b^{-\mu} \quad (z \in U). \quad (6)$$

It is easy to observe from (given earlier by [14], [17]) (1), (5) and (6) that

$$J_{b, \mu}^{1+b} f(z) = z + \sum_{k=2}^{\infty} \left(1 + b\right)^{\mu} (k + b)^{\mu} a_k z^k. \quad (7)$$

Motivated essentially by the above-mentioned Srivastava-Attiya operator, we define the operator

$$J_{b, \mu}^{n_p} : A_p \rightarrow A_p$$
which is defined as

\[J_{b,\mu}^{k,p}f(z) = z^p + \sum_{k=1}^{\infty} C_{b}^{\mu}(k, p) a_{p+k} z^{p+k} \quad (z \in \mathbb{U}; f(z) \in \mathcal{A}_p) \]

(8)

where

\[C_{b}^{\mu}(k, p) = \left| \left(\frac{p + b}{k + p + b} \right)^{\mu} \right| \]

(9)

and (throughout this paper unless otherwise mentioned) the parameters \(\mu, b \) are constrained as

\[b \in \mathbb{C} \setminus \{ \mathbb{Z}^+ \}; \mu \in \mathbb{C} \quad \text{and} \quad p, \in \mathbb{N}. \]

1. For \(\mu = 1 \) and \(b = \nu (\nu > -1) \) generalized Libera Bernardi integral operators [16]

\[J_{\nu,1}^{k,p}f(z) := \frac{p + \nu}{z^\nu} \int_0^z t^{\nu-1} f(t) \, dt := z + \sum_{k=1}^{\infty} \left(\frac{\nu + p}{k + p + \nu} \right) a_{p+k} z^{p+k} := \mathcal{L}_p f(z). \]

(10)

2. For \(\mu = \sigma (\sigma > 0) \) and \(b = 1 \) Jung-Kim-Srivastava integral operator [12]

\[J_{1,\sigma}^{k,p}f(z) := z + \sum_{k=1}^{\infty} \left(\frac{1 + p}{k + p + 1} \right)^{\sigma} a_{p+k} z^{p+k} := \mathcal{I}_\sigma f(z) \]

(11)

closely related to some multiplier transformation studied by Flett[6]. Making use of the operator \(J_{b,\mu}^{k,p} \), and motivated by earlier works of [1, 2, 3, 8, 9, 15, 13, 20, 21, 24, 25, 26], we introduced a new subclass of analytic functions with negative coefficients and discuss some some usual properties of the geometric function theory of this generalized function class.

For \(0 \leq \lambda \leq 1, 0 \leq \alpha < 1 \) and \(\beta \geq 0 \), we let \(P_{b,\mu}^{k,p}(\lambda, \alpha, \beta) \) be the subclass of \(\mathcal{A}_p \) consisting of functions of the form (1) and satisfying the inequality

\[
\begin{aligned}
\text{Re} \left\{ \frac{(1 - \lambda + \frac{\lambda}{p}) z (J_{b,\mu}^{k,p}f(z))'}{p(1 - \lambda)} + \frac{\lambda z^2 (J_{b,\mu}^{k,p}f(z))''}{p(1 - \lambda)} - \alpha \right\} > \beta \\
\end{aligned}
\]

(12)
where \(z \in U \), \(\mathcal{S}^{k,p}_{b,\mu} f(z) \) is given by (8). We further let \(TP^{k,p}_{b,\mu}(\lambda, \alpha, \beta) = P^{k,p}_{b,\mu}(\lambda, \alpha, \beta) \cap T_p \).

In particular, for \(0 \leq \lambda \leq 1 \), the class \(TP^{k,p}_{b,\mu}(\lambda, \alpha, \beta) \) provides a transition from \(k \)-uniformly starlike functions to \(k \)-uniformly convex functions.

Example 1 If \(\lambda = 0 \), then

\[
TP^{k,p}_{b,\mu}(0, \alpha, \beta) \equiv TS^{k,p}_{b,\mu}(\alpha, \beta) := \text{Re} \left\{ \frac{1}{p} \frac{z(J^{k,p}_{b,\mu} f(z))'}{J^{k,p}_{b,\mu} f(z)} - \alpha \right\} > \beta \left| \frac{1}{p} \frac{z(J^{k,p}_{b,\mu} f(z))'}{J^{k,p}_{b,\mu} f(z)} - 1 \right|, z \in U.
\]

Example 2 If \(\lambda = 1 \), then

\[
TP^{k,p}_{b,\mu}(1, \alpha, \beta) \equiv UTC^{k,p}_{b,\mu}(\alpha, \beta) := \text{Re} \left\{ \frac{1}{p} \left[1 + \frac{z(J^{k,p}_{b,\mu} f(z))''}{(J^{k,p}_{b,\mu} f(z))'} \right] - \alpha \right\} > \beta \left| \frac{1}{p} \left[1 + \frac{z(J^{k,p}_{b,\mu} f(z))''}{(J^{k,p}_{b,\mu} f(z))'} \right] - 1 \right|, z \in U.
\]

Example 3 For \(\mu = 1, b = q (q > -1) \) and \(f(z) \) is as defined in (10) is in \(L^p_{\nu}(\lambda, \alpha, \beta) \) if

\[
\text{Re} \left(\left(1 - \lambda + \frac{\lambda}{p} \right) z(L^p_{\nu} f(z))' + \frac{\lambda}{p} z^2(L^p_{\nu} f(z))'' \right) > \beta \left| \left(1 - \lambda + \frac{\lambda}{p} \right) z(L^p_{\nu} f(z))' + \frac{\lambda}{p} z^2(L^p_{\nu} f(z))'' \right|, z \in U.
\]

Also, let \(L^p_{\nu}(\lambda, \alpha, \beta) \cap T_p = T L^p_{\nu}(\lambda, \alpha, \beta) \).

Example 4 For \(\mu = \sigma (\sigma > 0) \), \(b = 1 \) and \(f(z) \) is defined in (11), is in \(\mathcal{I}^p_{\sigma}(\lambda, \alpha, \beta) \) if

\[
\text{Re} \left(\left(1 - \lambda + \frac{\lambda}{p} \right) z(I^p_{\sigma} f(z))' + \frac{\lambda}{p} z^2(I^p_{\sigma} f(z))'' \right) > \beta \left| \left(1 - \lambda + \frac{\lambda}{p} \right) z(I^p_{\sigma} f(z))' + \frac{\lambda}{p} z^2(I^p_{\sigma} f(z))'' \right|, z \in U.
\]

Also, let \(I^p_{\sigma}(\lambda, \alpha, \beta) \cap T_p = T I^p_{\sigma}(\lambda, \alpha, \beta) \).
The main object of this paper is to study the coefficient bounds, extreme points and radius of starlikeness for functions belonging to the generalized class $TP^{k,p}_{b,\mu}(\lambda, \alpha, \beta)$ employing the technique of Silverman[18] and also derive results for the modified Hadamard products of functions belonging to the class $TP^{k,p}_{b,\mu}(\lambda, \alpha, \beta)$ using the techniques of Schild and Silverman [19].

2 Coefficient Bounds

In this section we obtain a necessary and sufficient condition for functions $f(z)$ in the classes $P^{k,p}_{b,\mu}(\lambda, \alpha, \beta)$ and $TP^{k,p}_{b,\mu}(\lambda, \alpha, \beta)$.

Theorem 1 A function $f(z)$ of the form (1) is in $P^{k,p}_{b,\mu}(\lambda, \alpha, \beta)$ if

\[
\sum_{k=1}^{\infty} |p + k\lambda| |k(1 + \beta) + p(1 - \alpha)| |C^k_b(k, p)||a_{p+k}| \leq p^2(1 - \alpha), \tag{1}
\]

$0 \leq \lambda \leq 1$, $-1 \leq \alpha < 1$, $\beta \geq 0$.

Proof. It suffices to show that

\[
\beta \left| \frac{(1 - \lambda + \frac{1}{p})z(J^{k,p}_{b,\mu}f(z))' + \frac{\lambda}{p}z^2(J^{k,p}_{b,\mu}f(z))''}{p(1 - \lambda)J^{k,p}_{b,\mu}f(z) + \lambda z(J^{k,p}_{b,\mu}f(z))'} - 1 \right| - \text{Re} \left\{ \frac{(1 - \lambda + \frac{1}{p})z(J^{k,p}_{b,\mu}f(z))' + \frac{\lambda}{p}z^2(J^{k,p}_{b,\mu}f(z))''}{p(1 - \lambda)J^{k,p}_{b,\mu}f(z) + \lambda z(J^{k,p}_{b,\mu}f(z))'} - 1 \right\} \leq 1 - \alpha
\]

We have

\[
\beta \left| \frac{(1 - \lambda + \frac{1}{p})z(J^{k,p}_{b,\mu}f(z))' + \frac{\lambda}{p}z^2(J^{k,p}_{b,\mu}f(z))''}{p(1 - \lambda)J^{k,p}_{b,\mu}f(z) + \lambda z(J^{k,p}_{b,\mu}f(z))'} - 1 \right| - \text{Re} \left\{ \frac{(1 - \lambda + \frac{1}{p})z(J^{k,p}_{b,\mu}f(z))' + \frac{\lambda}{p}z^2(J^{k,p}_{b,\mu}f(z))''}{p(1 - \lambda)J^{k,p}_{b,\mu}f(z) + \lambda z(J^{k,p}_{b,\mu}f(z))'} - 1 \right\} \leq (1 + \beta) \left| \frac{(1 - \lambda + \frac{1}{p})z(J^{k,p}_{b,\mu}f(z))' + \frac{\lambda}{p}z^2(J^{k,p}_{b,\mu}f(z))''}{p(1 - \lambda)J^{k,p}_{b,\mu}f(z) + \lambda z(J^{k,p}_{b,\mu}f(z))'} - 1 \right|
\]

\[
0 \leq \sum_{k=1}^{\infty} k[p + k\lambda]|C^k_b(k, p)||a_{p+k}| \leq p - \sum_{k=1}^{\infty} |p + k\lambda||C^k_b(k, p)||a_{p+k}|.
\]
This last expression is bounded above by \((1 - \alpha)\) if
\[
\sum_{k=1}^{\infty} |p + k\lambda|[k(1 + \beta) + p(1 - \alpha)] |C_0^\mu(k, p)| a_{p+k} \leq p^2(1 - \alpha)
\]
and hence the proof is complete. \(\square\)

Theorem 2 A necessary and sufficient condition for \(f(z)\) of the form (2) to be in the class \(TP_{k,p}^\mu(\lambda, \alpha, \beta)\), \(-1 \leq \alpha < 1, 0 \leq \lambda \leq 1, \beta \geq 0\) is that
\[
\sum_{k=1}^{\infty} |p + k\lambda|[k(1 + \beta) + p(1 - \alpha)] |C_0^\mu(k, p)| a_{p+k} \leq p^2(1 - \alpha),
\]

Proof. In view of Theorem 1, we need only to prove the necessity. If \(f \in P_{k,p}^\mu(\lambda, \alpha, \beta)\) and \(z\) is real then
\[
1 - \sum_{k=1}^{\infty} \frac{[p+k\lambda]}{p} |C_0^\mu(k, p)| a_{p+k} |z|^k - \alpha \geq \beta \sum_{k=1}^{\infty} \frac{k[p+k\lambda]}{p} |C_0^\mu(k, p)| a_{p+k} |z|^k
\]
Letting \(z \to 1\) along the real axis, we obtain the desired inequality
\[
\sum_{k=1}^{\infty} |p + k\lambda|[k(1 + \beta) + p(1 - \alpha)] |C_0^\mu(k, p)| a_{p+k} \leq p^2(1 - \alpha).
\]

\(\square\)

In view of the Examples 1 to 4 in Section 1 and Theorem 2, we have following corollaries for the classes defined in these examples.

Corollary 1 A necessary and sufficient condition for \(f(z)\) of the form (2) to be in the class \(TS_{k,p}^\mu(\alpha, \beta)\), \(0 \leq \alpha < 1, \beta \geq 0\) is that
\[
\sum_{k=1}^{\infty} [k(1 + \beta) + p(1 - \alpha)] |C_0^\mu(k, p)| a_{p+k} \leq p(1 - \alpha),
\]

Corollary 2 A necessary and sufficient condition for \(f(z)\) of the form (2) to be in the class \(UCT_{k,p}^\mu(\alpha, \beta)\), \(0 \leq \alpha < 1, \beta \geq 0\) is that
\[
\sum_{k=1}^{\infty} (p + k)[k(1 + \beta) + p(1 - \alpha)] |C_0^\mu(k, p)| a_{p+k} \leq p^2(1 - \alpha),
\]
Corollary 3 A necessary and sufficient condition for \(f(z) \) of the form (2) to be in the class \(TL_{\nu}^k(\lambda, \alpha, \beta) \), \(0 \leq \alpha < 1, \beta \geq 0 \) is that

\[
\sum_{k=1}^{\infty} (p+k\lambda)[k(1+\beta)+p(1-\alpha)] \left(\frac{p+\nu}{k+p+\nu} \right) a_{p+k} \leq p^2(1-\alpha).
\]

Corollary 4 A necessary and sufficient condition for \(f(z) \) of the form (2) to be in the class \(TT_p(\lambda, \alpha, \beta) \), \(0 \leq \alpha < 1, \beta \geq 0 \) is that

\[
\sum_{k=1}^{\infty} (p+k\lambda)[k(1+\beta)+p(1-\alpha)] \left(\frac{1+p}{k+p+1} \right)^\sigma a_{p+k} \leq p^2(1-\alpha).
\]

Corollary 5 If \(f \in TP_{b,\mu}^k(\lambda, \alpha, \beta) \), then

\[
a_{p+k} \leq \frac{p^2(1-\alpha)}{[p+k\lambda][k(1+\beta)+p(1-\alpha)]C_b^\mu(k,p)}, \quad k \geq 1,
\]

where \(0 \leq \lambda \leq 1, -1 \leq \alpha < 1 \) and \(\beta \geq 0 \). Equality in (3) holds for the function

\[
f(z) = z - \frac{p^2(1-\alpha)}{[p+k\lambda][k(1+\beta)+p(1-\alpha)]C_b^\mu(k,p)} z^{p+k} \quad (p \in \mathbb{N}).
\]

It is of interest to note that, when \(p = 1 \) and \(k = n-1 \), the above results reduces to the results studied in [2, 8, 9, 20, 21] Similarly many known results can be obtained as particular cases of the following theorems, so we omit stating the particular cases for the following theorems.

3 Closure Properties

Theorem 1 Let

\[
f_p(z) = z^p \quad (p \in \mathbb{N}) \quad \text{and} \quad f_{p+k}(z) = z^p - \frac{p^2(1-\alpha)}{[p+k\lambda][k(1+\beta)+p(1-\alpha)]C_b^\mu(k,p)} z^{p+k}.
\]

Then \(f \in TP_{b,\mu}^k(\lambda, \alpha, \beta) \), if and only if it can be expressed in the form

\[
f(z) = \sum_{k=0}^{\infty} \omega_{p+k} f_{p+k}(z), \quad \omega_{p+k} \geq 0, \quad \sum_{k=0}^{\infty} \omega_{p+k} = 1.
\]
Proof. Let us suppose that \(f(z) \) is given by (2), that is by
\[
f(z) = z^p - \sum_{k=1}^{\infty} \frac{p^2(1-\alpha)}{|p+k\lambda|[k(1+\beta)+p(1-\alpha)]|C_B^p(k,p)|^\omega_{p+k}} z^{p+k}.
\]
Then, since
\[
\sum_{k=1}^{\infty} \frac{[p+k\lambda][k(1+\beta)+p(1-\alpha)]|C_B^p(k,p)|}{p^2(1-\alpha)[p+k\lambda][k(1+\beta)+p(1-\alpha)]} \omega_{p+k} = \sum_{k=1}^{\infty} \omega_{p+k} = 1 - \omega_p \leq 1.
\]
Thus \(f \in TP_{b,\mu}^{k,p}(\lambda, \alpha, \beta) \). Conversely, let us have \(f \in TP_{b,\mu}^{k,p}(\lambda, \alpha, \beta) \). Then by using (3), we set
\[
\omega_{p+k} = \frac{[p+k\lambda][k(1+\beta)+p(1-\alpha)]|C_B^p(k,p)|}{p^2(1-\alpha)} a_{p+k}, \quad (k \in \mathbb{N})
\]
and \(\omega_p = 1 - \sum_{k=1}^{\infty} \omega_{p+k} \), we can readily see that \(f(z) \) can be expressed precisely as in (1). This evidently completes the proof of Theorem 1.

\[\square\]

Theorem 2 The class \(TP_{b,\mu}^{k,p}(\lambda, \alpha, \beta) \) is a convex set.

Proof. Let the function
\[
f_j(z) = z^p - \sum_{k=1}^{\infty} a_{p+k,j} z^{p+k}, \quad (a_{p+k,j} \geq 0, p \in \mathbb{N}; \ j = 1, 2,...) \quad (3)
\]
be in the class \(TP_{b,\mu}^{k,p}(\lambda, \alpha, \beta) \). It sufficient to show that the function \(h(z) \) defined by
\[
h(z) = \eta f_1(z) + (1-\eta)f_2(z), \quad 0 \leq \eta \leq 1,
\]
is in the class \(TP_{b,\mu}^{k,p}(\lambda, \alpha, \beta) \). Since
\[
h(z) = z^p - \sum_{k=1}^{\infty} [\eta a_{p+k,1} + (1-\eta) a_{p+k,2}] z^{p+k},
\]
an easy computation with the aid of Theorem 2 gives,

\[\sum_{k=1}^{\infty} [p + k\lambda][k(1 + \beta) + p(1 - \alpha)]\eta|C^\mu_0(k, p)|a_{p+k,1} \]
\[+ \sum_{k=1}^{\infty} [p + k\lambda][k(1 + \beta) + p(1 - \alpha)][1 - \eta]|C^\mu_0(k, p)|a_{p+k,2} \]
\[\leq p^2\eta(1 - \alpha) + p^2(1 - \eta)(1 - \alpha) \]
\[\leq p^2(1 - \alpha), \]

which implies that \(h \in TP_{b,\mu}^k(\lambda, \alpha, \beta) \). Hence \(TP_{b,\mu}^k(\lambda, \alpha, \beta) \) is convex. \(\square \)

Now we provide the radii of \(p \)-valently close-to-convexity, starlikeness and convexity for the class \(TP_{b,\mu}^k(\lambda, \alpha, \beta) \).

Theorem 3 Let the function \(f(z) \) defined by (2) be in the class \(TP_{b,\mu}^k(\lambda, \alpha, \beta) \). Then \(f(z) \) is \(p \)-valently close-to-convex of order \(\delta \) \((0 \leq \delta < p) \) in the disc \(|z| < r_1 \), where

\[r_1 := \inf_{k \in \mathbb{N}} \left[\left(1 - \delta \right)[k(1 + \beta) + p(1 - \alpha)][p + k\lambda]|C^\mu_0(k, p)| \right]^{\frac{1}{k}}. \]

The result is sharp, with extremal function \(f(z) \) given by (1).

Proof. Given \(f \in T_p \), and \(f \) is close-to-convex of order \(\delta \), we have

\[\left| \frac{f'(z)}{z^{p-1}} - p \right| < p - \delta. \]

(5)

For the left hand side of (5) we have

\[\left| \frac{f'(z)}{z^{p-1}} - p \right| \leq \sum_{k=1}^{\infty} (p + k)a_{p+k}|z|^k. \]

The last expression is less than \(p - \delta \) if

\[\sum_{k=1}^{\infty} \frac{p + k}{p - \delta}a_{p+k}|z|^k < 1. \]

Using the fact, that \(f \in TP_{b,\mu}^k(\lambda, \alpha, \beta) \) if and only if

\[\sum_{k=1}^{\infty} [p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C^\mu_0(k, p)|a_n \leq 1, \]
We can say (5) is true if

$$\frac{p + k}{p - \delta} |z|^k \leq \frac{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_b^\mu(k, p)|}{p^2(1 - \alpha)} a_n$$

Or, equivalently,

$$|z|^k = \left[\frac{[p - \delta][p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_b^\mu(k, p)|}{p^2(p + k)(1 - \alpha)} \right].$$

the last inequality leads us immediately to the disc $|z| < r_1$, where r_1 given by (4) and the proof of Theorem 3 is completed. \square

Theorem 4 If $f \in TP_{b, \mu}^k(\lambda, \alpha, \beta)$, then

(i) f is p-valently starlike of order $\delta (0 \leq \delta < p)$ in the disc $|z| < r_2$; that is,

$$Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \delta,$$

where

$$r_2 = \inf_{k \in \mathbb{N}} \left[\left(\frac{p - \delta}{p + k - \delta} \right) \frac{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_b^\mu(k, p)|}{p^2(1 - \alpha)} \right]^{\frac{1}{k}}.$$

(ii) f is convex of order $\delta (0 \leq \delta < p)$ in the unit disc $|z| < r_3$, that is

$$Re \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \delta,$$

where

$$r_3 = \inf_{k \in \mathbb{N}} \left[\left(\frac{p - \delta}{(k + p)(p + k - \delta)} \right) \frac{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_b^\mu(k, p)|}{p^2(1 - \alpha)} \right]^{\frac{1}{k}}.$$

Each of these results are sharp for the extremal function $f(z)$ given by (1).

Proof. (i) Given $f \in T_p$, and f is starlike of order δ, we have

$$\left| \frac{zf'(z)}{f(z)} - p \right| < p - \delta.$$

For the left hand side of (8) we have

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \sum_{k=1}^{\infty} k a_{p+k} |z|^k \leq \frac{\sum_{k=1}^{\infty} k a_{p+k} |z|^k}{1 - \sum_{k=1}^{\infty} a_{p+k} |z|^k}.$$
The last expression is less than $p - \delta$ if

$$\sum_{k=1}^{\infty} \frac{k + p - \delta}{p - \delta} a_{p+k} |z|^k < 1.$$

Using the fact, that $f \in TP_{b,\nu}^{k,p}(\lambda, \alpha, \beta)$ if and only if

$$\sum_{k=1}^{\infty} \frac{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]}{p^2(1 - \alpha)} a_{p+k}|C_{\mu}^b(k,p)| \leq 1.$$

We can say (8) is true if

$$\frac{p + k - \delta}{p - \delta} |z|^k < \frac{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_{\mu}^b(k,p)|}{p^2(1 - \alpha)}.$$

Or, equivalently,

$$|z|^k = \left[\frac{p - \delta}{p + k - \delta} \frac{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_{\mu}^b(k,p)|}{p^2(1 - \alpha)} \right]$$

which yields the starlikeness of the family.

(ii) Using the fact that f is convex if and only if zf' is starlike, we can prove (ii), on lines similar to the proof of (i).

\[\square\]

4 Convolution Results

Let the functions

$$f_j(z) = z^p + \sum_{k=1}^{\infty} a_{j,p+k} z^{p+k}, \quad (p \in \mathbb{N} = 1, 2, 3, \ldots) (j = 1, 2) \quad (9)$$

then the modified Hadamard product of $f_1(z)$ and $f_2(z)$ is given by

$$(f_1 * f_2)(z) = z^p - \sum_{n=2}^{\infty} a_{1,p+k} a_{2,p+k} z^{p+k} = (f_2 * f_1)(z), (a_{1,p+k} \geq 0; a_{2,p+k} \geq 0).$$

Using the techniques of we prove the following results.
Theorem 5 For functions $f_j(z)(j = 1, 2)$ defined by (9), be in the class $TP_{b,µ}^{k,p}(\lambda, \alpha, \beta)$. Then $(f_1 * f_2) \in TP_{b,µ}^{k,p}(\lambda, \xi, \beta)$ where

$$\xi = 1 - \frac{p^2(1 - \alpha)^2(1 + \beta)}{|p + \lambda|[1 + \beta] + p(1 - \alpha)|C_b^1(1, p)| - p^3(1 - \alpha)^2}$$ \hspace{1cm} (10)

where $C_b^1(1, p)$ is given by (9).

Proof. Employing the technique used earlier by Schild and Silverman[19], we need to find the largest ξ such that

$$\sum_{k=1}^{\infty} \frac{|p + k\lambda|[k(1 + \beta) + p(1 - \xi)]|C_b^1(k, p)|}{|p^2(1 - \alpha)|} a_{1,p+k} a_{2,p+k} \leq 1, \quad (0 \leq \xi < 1)$$

for $f_j \in TP_{b,µ}^{k,p}(\lambda, \alpha, \beta)(j = 1, 2)$ where ξ is defined by (10). On the other hand, under the hypothesis, it follows from (1) and the Cauchy’s-Schwarz inequality that

$$\sum_{k=1}^{\infty} \frac{|p + k\lambda|[k(1 + \beta) + p(1 - \alpha)]|C_b^1(k, p)|}{|p^2(1 - \alpha)|} \sqrt{a_{1,p+k} a_{2,p+k}} \leq 1.$$ \hspace{1cm} (11)

Thus we need to find the largest ξ such that

$$\sum_{k=1}^{\infty} \frac{|p + k\lambda|[k(1 + \beta) + p(1 - \alpha)]|C_b^1(k, p)|}{|p^2(1 - \alpha)|} a_{1,p+k} a_{2,p+k} \leq \sum_{k=1}^{\infty} \frac{|p + k\lambda|[k(1 + \beta) + p(1 - \alpha)]|C_b^1(k, p)|}{|p^2(1 - \alpha)|} \sqrt{a_{1,p+k} a_{2,p+k}}$$

or, equivalently that

$$\sqrt{a_{1,p+k} a_{2,p+k}} \leq \frac{(1 - \xi)[k(1 + \beta) + p(1 - \alpha)]}{(1 - \alpha)[k(1 + \beta) + p(1 - \xi)]}, \quad (k \geq 1).$$

Hence by making use of the inequality (11), it is sufficient to prove that

$$\frac{p^2(1 - \alpha)}{|p + k\lambda|[k(1 + \beta) + p(1 - \alpha)]|C_b^1(k, p)|} \leq \frac{(1 - \xi)[k(1 + \beta) + p(1 - \alpha)]}{(1 - \alpha)[k(1 + \beta) + p(1 - \xi)]}$$

which yields

$$\xi = \Psi(k) = 1 - \frac{kp^2(1 - \alpha)^2(1 + \beta)}{|p + k\lambda|[k(1 + \beta) + p(1 - \alpha)]|C_b^1(k, p)| - p^3(1 - \alpha)^2}$$ \hspace{1cm} (12)
for \(k \geq 1 \) is an increasing function of \(k \) and letting \(k = 1 \) in (12), we have

\[
\delta = \Psi(1) = 1 - \frac{p^2(1 - \alpha)^2(1 + \beta)}{[p + \lambda][(1 + \beta) + p(1 - \alpha)]^2|C_{b}^{k}(1, p)| - p^3(1 - \alpha)^2}
\]

where \(C_{b}^{k}(1, p) \) is given by (9).

\[\square \]

Theorem 6 Let the function \(f(z) \) defined by (2) be in the class \(TP_{k,p}^{k^p}(\lambda, \alpha, \beta) \).

Also let \(g(z) = z^p - \sum_{k=1}^{\infty} b_{p+k}z^{p+k} \) for \(|b_{p+k}| \leq 1 \). Then \((f \ast g) \in TP_{k,p}^{k^p}(\lambda, \alpha, \beta) \).

Proof. Since

\[
\sum_{k=1}^{\infty} [p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_{b}^{k}(k, p)| |a_{p+k}b_{p+k}|
\]

\[
\leq \sum_{k=1}^{\infty} [p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_{b}^{k}(k, p)| |a_{p+k}b_{p+k}|
\]

\[
\leq \sum_{k=1}^{\infty} [p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_{b}^{k}(k, p)| |a_{p+k}|
\]

\[
\leq p^2(1 - \alpha)
\]

it follows that \((f \ast g) \in TP_{k,p}^{k^p}(\lambda, \alpha, \beta) \), by the view of Theorem 2. \[\square \]

Theorem 7 Let the functions \(f_j(z) (j = 1, 2) \) defined by (9) be in the class \(TP_{k,p}^{k^p}(\lambda, \alpha, \beta) \).

Then the function \(h(z) \) defined by

\[
h(z) = z^p - \sum_{n=2}^{\infty} (a_{1,p+n}^2 + a_{2,p+n}^2)z^{p+n}
\]

is in the class \(TP_{k,p}^{k^p}(\lambda, \xi, \beta) \), where

\[
\delta = 1 - \frac{2p^2(1 - \alpha)^2(1 + \beta)}{[p + \lambda][(1 + \beta) + p(1 - \alpha)]^2|C_{b}^{k}(1, p)| - 2p^3(1 - \alpha)^2}
\]

where \(C_{b}^{k}(1, p) \) is given by (9).
Proof. By virtue of Theorem 2, it is sufficient to prove that
\[
\sum_{k=1}^{\infty} \frac{[p + k\lambda][k(1 + \beta) + p(1 - \xi)]C_b^p(k, p)}{p^2(1 - \xi)} [a_{1,p+k}^2 + a_{2,p+k}^2] \leq 1
\] (13)
where \(f_j \in TP_{b,\mu}^{k,p}(\lambda, \alpha, \beta) \) we find from (9) and Theorem 2, that
\[
\sum_{k=1}^{\infty} \left[\frac{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_b^p(k, p)|}{p^2(1 - \alpha)} \right]^2 a_{j,p+k}^2 \leq 1, (j = 1, 2)
\] (15)
which would readily yield
\[
\sum_{k=1}^{\infty} \frac{1}{2} \left[\frac{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_b^p(k, p)|}{p^2(1 - \alpha)} \right]^2 [a_{1,p+k}^2 + a_{2,p+k}^2] \leq 1.
\] (16)

By comparing (14) and (16), it is easily seen that the inequality (13) will be satisfied if
\[
\frac{[p + k\lambda][k(1 + \beta) + p(1 - \xi)]|C_b^p(k, p)|}{p^2(1 - \xi)} \leq \frac{1}{2} \left[\frac{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]|C_b^p(k, p)|}{p^2(1 - \alpha)} \right]^2, \text{ for } k \geq 1.
\]
That is if
\[
\xi = \Psi(k) = 1 - \frac{2p^2(1 - \alpha)^2 k(1 + \beta)}{[p + k\lambda][k(1 + \beta) + p(1 - \alpha)]^2|C_b^p(k, p)| - 2p^3(1 - \alpha)^2}
\] (17)
Since \(\Psi(k) \) is an increasing function of \(k \) (\(k \geq 1 \)). Taking \(k = 1 \) in (17), we have,
\[
\xi = \Psi(1) = 1 - \frac{2p^2(1 - \alpha)^2 (1 + \beta)}{[p + \lambda][(1 + \beta) + p(1 - \alpha)]^2|C_b^p(1, p)| - 2p^3(1 - \alpha)^2}
\]
which completes the proof. \(\square \)

Concluding Remarks: In fact, by appropriately selecting the arbitrary sequences given in (10) and (11), suitably specializing the values of \(\mu, \alpha, \beta \) and \(p \) the results presented in this paper would find further applications for the class of \(p \)-valent functions stated in Examples 1 to 4 in Section 1.
References

Received: April 3, 2011